GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Immunity & Ageing, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2023-05-11)
    Abstract: Current influenza vaccines deliver satisfactory results in young people but are less effective in the elderly. Development of vaccines for an ever-increasing aging population has been an arduous challenge due to immunosenescence that impairs the immune response in the aged, both quantitatively and qualitatively. Results To potentially enhance vaccine efficacy in the elderly, we investigated the immunogenicity and cross-protection of influenza hemagglutinin virus-like particles (HA-VLP) incorporated with glycosylphosphatidylinositol (GPI)-anchored cytokine-adjuvants (GPI-GM-CSF and GPI-IL-12) via protein transfer in aged mice. Lung viral replication against homologous and heterologous influenza viruses was significantly reduced in aged mice after vaccination with cytokine incorporated VLPs (HA-VLP-Cyt) in comparison to HA-VLP alone. Enhanced IFN-γ + CD4 + and IFN-γ + CD8 + T cell responses were also observed in aged mice immunized with HA-VLP-Cyt when compared to HA-VLP alone. Conclusions Cytokine-adjuvanted influenza HA-VLP vaccine induced enhanced protective response against homologous influenza A virus infection in aged mice. Influenza HA-VLP vaccine with GPI-cytokines also induced enhanced T cell responses correlating with better protection against heterologous infection in the absence of neutralizing antibodies. The results suggest that a vaccination strategy using cytokine-adjuvanted influenza HA-VLPs could be used to enhance protection against influenza A virus in the elderly.
    Type of Medium: Online Resource
    ISSN: 1742-4933
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2168941-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Vaccines, MDPI AG, Vol. 8, No. 2 ( 2020-04-14), p. 182-
    Abstract: Immune checkpoint inhibitor (ICI) immunotherapy improved the survival of head and neck squamous cell carcinoma (HNSCC) patients. However, more than 80% of the patients are still resistant to this therapy. To test whether the efficacy of ICI therapy can be improved by vaccine-induced immunity, we investigated the efficacy of a tumor membrane-based vaccine immunotherapy in murine models of HNSCC. The tumors, grown subcutaneously, are used to prepare tumor membrane vesicles (TMVs). TMVs are then incorporated with glycolipid-anchored immunostimulatory molecules GPI-B7-1 and GPI-IL-12 by protein transfer to generate the TMV vaccine. This TMV vaccine inhibited tumor growth and improved the survival of mice challenged with SCCVII tumor cells. The tumor-free mice survived for several months, remained tumor-free, and were protected following a secondary tumor cell challenge, suggesting that the TMV vaccine induced an anti-tumor immune memory response. However, no synergy with anti-PD1 mAb was observed in this model. In contrast, the TMV vaccine was effective in inhibiting MOC1 and MOC2 murine oral cancer models and synergized with anti-PD1 mAb in extending the survival of tumor-bearing mice. These observations suggest that tumor tissue based TMV vaccines can be harnessed to develop an effective personalized immunotherapy for HNSCC that can enhance the efficacy of immune checkpoint inhibitors.
    Type of Medium: Online Resource
    ISSN: 2076-393X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2703319-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal for ImmunoTherapy of Cancer, BMJ, Vol. 9, No. 11 ( 2021-11), p. e002614-
    Abstract: PD-L1 is one of the major immune checkpoints which limits the effectiveness of antitumor immunity. Blockade of PD-L1/PD-1 has been a major improvement in the treatment of certain cancers, however, the response rate to checkpoint blockade remains low suggesting a need for new therapies. Metformin has emerged as a potential new drug for the treatment of cancer due to its effects on PD-L1 expression, T cell responses, and the immunosuppressive environment within tumors. While the benefits of metformin in combination with checkpoint blockade have been reported in animal models, little remains known about its effect on other types of immunotherapy. Methods Vaccine immunotherapy and metformin were administered to mice inoculated with tumors to investigate the effect of metformin and TMV vaccine on tumor growth, metastasis, PD-L1 expression, immune cell infiltration, and CD8 T cell phenotype. The effect of metformin on IFN-γ induced PD-L1 expression in tumor cells was assessed by flow cytometry, western blot, and RT-qPCR. Results We observed that tumors that respond to metformin and vaccine immunotherapy combination show a reduction in surface PD-L1 expression compared with tumor models that do not respond to metformin. In vitro assays showed that the effect of metformin on tumor cell PD-L1 expression was mediated in part by AMP-activated protein kinase signaling. Vaccination results in increased T cell infiltration in all tumor models, and this was not further enhanced by metformin. However, we observed an increased number of CD8 T cells expressing PD-1, Ki-67, Tim-3, and CD62L as well as increased effector cytokine production after treatment with metformin and tumor membrane vesicle vaccine. Conclusions Our data suggest that metformin can synergize with vaccine immunotherapy to augment the antitumor response through tumor-intrinsic mechanisms and also alter the phenotype and function of CD8 T cells within the tumor, which could provide insights for its use in the clinic.
    Type of Medium: Online Resource
    ISSN: 2051-1426
    Language: English
    Publisher: BMJ
    Publication Date: 2021
    detail.hit.zdb_id: 2719863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...