GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Record, Eric  (3)
  • Vallon, Laurent  (3)
  • 1
    In: Journal of Fungi, MDPI AG, Vol. 7, No. 5 ( 2021-04-21), p. 321-
    Abstract: The functional diversity of the New Caledonian mangrove sediments was examined, observing the distribution of fungal dye-decolorizing peroxidases (DyPs), together with the complete biochemical characterization of the main DyP. Using a functional metabarcoding approach, the diversity of expressed genes encoding fungal DyPs was investigated in surface and deeper sediments, collected beneath either Avicennia marina or Rhizophora stylosa trees, during either the wet or the dry seasons. The highest DyP diversity was observed in surface sediments beneath the R. stylosa area during the wet season, and one particular operational functional unit (OFU1) was detected as the most abundant DyP isoform. This OFU was found in all sediment samples, representing 51–100% of the total DyP-encoding sequences in 70% of the samples. The complete cDNA sequence corresponding to this abundant DyP (OFU 1) was retrieved by gene capture, cloned, and heterologously expressed in Pichia pastoris. The recombinant enzyme, called DyP1, was purified and characterized, leading to the description of its physical–chemical properties, its ability to oxidize diverse phenolic substrates, and its potential to decolorize textile dyes; DyP1 was more active at low pH, though moderately stable over a wide pH range. The enzyme was very stable at temperatures up to 50 °C, retaining 60% activity after 180 min incubation. Its ability to decolorize industrial dyes was also tested on Reactive Blue 19, Acid Black, Disperse Blue 79, and Reactive Black 5. The effect of hydrogen peroxide and sea salt on DyP1 activity was studied and compared to what is reported for previously characterized enzymes from terrestrial and marine-derived fungi.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Microorganisms, MDPI AG, Vol. 9, No. 7 ( 2021-07-12), p. 1484-
    Abstract: Mangrove sediments from New Caledonia were screened for xylanase sequences. One enzyme was selected and characterized both biochemically and for its industrial potential. Using a specific cDNA amplification method coupled with a MiSeq sequencing approach, the diversity of expressed genes encoding GH11 xylanases was investigated beneath Avicenia marina and Rhizophora stylosa trees during the wet and dry seasons and at two different sediment depths. GH11 xylanase diversity varied more according to tree species and season, than with respect to depth. One complete cDNA was selected (OFU29) and expressed in Pichia pastoris. The corresponding enzyme (called Xyn11-29) was biochemically characterized, revealing an optimal activity at 40–50 °C and at a pH of 5.5. Xyn11-29 was stable for 48 h at 35 °C, with a half-life of 1 h at 40 °C and in the pH range of 5.5–6. Xyn11-29 exhibited a high hydrolysis capacity on destarched wheat bran, with 40% and 16% of xylose and arabinose released after 24 h hydrolysis. Its activity on wheat straw was lower, with a release of 2.8% and 6.9% of xylose and arabinose, respectively. As the protein was isolated from mangrove sediments, the effect of sea salt on its activity was studied and discussed.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Environmental Microbiology, Wiley, Vol. 21, No. 4 ( 2019-04), p. 1407-1424
    Abstract: Mangroves are forest ecosystems located at the interface between land and sea where sediments presented a variety of contrasted environmental conditions (i.e. oxic/anoxic, non‐sulfidic/sulfidic, organic matter content) providing an ideal ecosystem to study microbial communities with niche differentiation and distinct community structures. In this work, prokaryotic and fungal compositions were investigated during both wet and dry seasons in New Caledonian mangrove sediments, from the surface to deeper horizons under the two most common tree species in this region ( Avicennia marina and Rhizophora stylosa) , using high‐throughput sequencing. Our results showed that Bacteria and Archaea communities were mainly shaped by sediment depth while the fungal community was almost evenly distributed according to sediment depth, vegetation cover and season. A detailed analysis of prokaryotic and fungal phyla showed a dominance of Ascomycota over Basidiomycota whatever the compartment, while there was a clear shift in prokaryotic composition. Some prokaryotic phyla were enriched in surface layers such as Proteobacteria , Euryarchaeota while others were mostly associated with deeper layers as Chloroflexi , Bathyarchaeota , Aminicenantes . Our results highlight the importance of considering fungal and prokaryotic counterparts for a better understanding of the microbial succession involved in plant organic matter decomposition in tropical coastal sediments.
    Type of Medium: Online Resource
    ISSN: 1462-2912 , 1462-2920
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020213-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...