GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Razvanchy, Hawar Abdulrzaq S.  (2)
  • 1
    In: Water, MDPI AG, Vol. 14, No. 19 ( 2022-09-26), p. 3024-
    Abstract: In the past two decades, severe drought has been a recurrent problem in Iraq due in part to climate change. Additionally, the catastrophic drop in the discharge of the Tigris and Euphrates rivers and their tributaries has aggravated the drought situation in Iraq, which was formerly one of the most water-rich nations in the Middle East. The Kurdistan Region of Iraq (KRI) also has catastrophic drought conditions. This study analyzed a Landsat time-series dataset from 1998 to 2021 to determine the drought severity status in the KRI. The Modified Soil-Adjusted Vegetation Index (MSAVI2) and Normalized Difference Water Index (NDWI) were used as spectral-based drought indices to evaluate the severity of the drought and study the changes in vegetative cover, water bodies, and precipitation. The Standardized Precipitation Index (SPI) and the Spatial Coefficient of Variation (CV) were used as meteorologically based drought indices. According to this study, the study area had precipitation deficits and severe droughts in 2000, 2008, 2012, and 2021. The MSAVI2 results indicated that the vegetative cover decreased by 36.4%, 39.8%, and 46.3% in 2000, 2008, and 2012, respectively. The SPI’s results indicated that the KRI experienced droughts in 1999, 2000, 2008, 2009, 2012, and 2021, while the southeastern part of the KRI was most affected by drought in 2008. In 2012, the KRI’s western and southern parts were also considerably affected by drought. Furthermore, Lake Dukan (LD), which lost 63.9% of its surface area in 1999, experienced the most remarkable shrinkage among water bodies. Analysis of the geographic distribution of the CV of annual precipitation indicated that the northeastern parts, which get much more precipitation, had less spatial rainfall variability and more uniform distribution throughout the year than other areas. Moreover, the southwest parts exhibited a higher fluctuation in annual spatial variation. There was a statistically significant positive correlation between MSAVI2, SPI, NDWI, and agricultural yield-based vegetation cover. The results also revealed that low precipitation rates are always associated with declining crop yields and LD shrinkage. These findings may be concluded to provide policymakers in the KRI with a scientific foundation for agricultural preservation and drought mitigation.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Water, MDPI AG, Vol. 15, No. 8 ( 2023-04-20), p. 1605-
    Abstract: To increase agricultural productivity and ensure food security, it is important to understand the reasons for variations in irrigation over time. However, researchers often avoid investigating water productivity due to data availability challenges. This study aimed to assess the performance of the irrigation system for winter wheat crops using a high-resolution satellite, Sentinel 2 A/B, combined with meteorological data and Google Earth Engine (GEE)-based remote sensing techniques. The study area is located north of Erbil city in the Kurdistan region of Iraq (KRI) and consists of 143 farmer-owned center pivots. This study also aimed to analyze the spatiotemporal variation of key variables (Normalized Difference Moisture Index (NDMI), Normalized Difference Vegetation Index (NDVI), Precipitation (mm), Evapotranspiration (ETo), Crop evapotranspiration (ETc), and Irrigation (Hours), during the wheat-growing winter season in the drought year 2021 to understand the reasons for the variance in field performance. The finding revealed that water usage fluctuated significantly across the seasons, while yield gradually increased from the 2021 winter season. In addition, the study revealed a notable correlation between soil moisture based on the (NDMI) and vegetation cover based on the (NDVI), and the increase in yield productivity and reduction in the yield gap, specifically during the middle of the growing season (March and April). Integrating remote sensing with meteorological data in supplementary irrigation systems can improve agriculture and water resource management by boosting yields, improving crop quality, decreasing water consumption, and minimizing environmental impacts. This innovative technique can potentially enhance food security and promote environmental sustainability.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...