GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (2)
  • Ravichandran, Kodimangalam S.  (2)
Material
Publisher
  • American Society of Hematology  (2)
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 2000
    In:  Blood Vol. 96, No. 4 ( 2000-08-15), p. 1449-1456
    In: Blood, American Society of Hematology, Vol. 96, No. 4 ( 2000-08-15), p. 1449-1456
    Abstract: Activation of the serine/threonine kinase Akt and the regulation of its activation are recognized as critical in controlling proliferative/survival signals via many hematopoietic receptors. In B lymphocytes, the B-cell receptor (BCR)-mediated activation of Akt is attenuated by co–cross-linking of BCR with the inhibitory receptor FcγRIIB1, and the binding of the SH2 domain-containing inositol phosphatase, SHIP, to FcγRIIB1. Because SHIP dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PIP3) and activation of Akt requires PIP3, the destruction of this phospholipid has been proposed as the mechanism for Akt inhibition. However, upstream kinases that activate Akt, such as PDK1, also require PIP3 for activation. In this report, we addressed whether SHIP inhibits Akt directly at the level of Akt recruitment to the membrane, indirectly through PDK recruitment/phosphorylation of Akt, or both. We generated stable B-cell lines expressing a regulatable, but constitutively membrane-bound Akt that still required PDK-dependent phosphorylation for activation. Several lines of evidence suggested that activation of this membrane-targeted Akt is not inhibited by FcγRIIB1/SHIP and that PDK is not a target for SHIP-mediated inhibition. These data demonstrate that SHIP inhibits Akt primarily through regulation of Akt membrane localization. We also observed during these studies that FcγRIIB1/SHIP does not inhibit p70S6k activation, even though several other PIP3-dependent events were down-regulated. Because the enhanced activation of Akt in the absence of SHIP correlates with hyperproliferation in the myeloid lineage, our data have implications for SHIP and Akt-dependent regulation of proliferation in the hematopoietic lineage.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2000
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2000
    In:  Blood Vol. 96, No. 4 ( 2000-08-15), p. 1449-1456
    In: Blood, American Society of Hematology, Vol. 96, No. 4 ( 2000-08-15), p. 1449-1456
    Abstract: Activation of the serine/threonine kinase Akt and the regulation of its activation are recognized as critical in controlling proliferative/survival signals via many hematopoietic receptors. In B lymphocytes, the B-cell receptor (BCR)-mediated activation of Akt is attenuated by co–cross-linking of BCR with the inhibitory receptor FcγRIIB1, and the binding of the SH2 domain-containing inositol phosphatase, SHIP, to FcγRIIB1. Because SHIP dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PIP3) and activation of Akt requires PIP3, the destruction of this phospholipid has been proposed as the mechanism for Akt inhibition. However, upstream kinases that activate Akt, such as PDK1, also require PIP3 for activation. In this report, we addressed whether SHIP inhibits Akt directly at the level of Akt recruitment to the membrane, indirectly through PDK recruitment/phosphorylation of Akt, or both. We generated stable B-cell lines expressing a regulatable, but constitutively membrane-bound Akt that still required PDK-dependent phosphorylation for activation. Several lines of evidence suggested that activation of this membrane-targeted Akt is not inhibited by FcγRIIB1/SHIP and that PDK is not a target for SHIP-mediated inhibition. These data demonstrate that SHIP inhibits Akt primarily through regulation of Akt membrane localization. We also observed during these studies that FcγRIIB1/SHIP does not inhibit p70S6k activation, even though several other PIP3-dependent events were down-regulated. Because the enhanced activation of Akt in the absence of SHIP correlates with hyperproliferation in the myeloid lineage, our data have implications for SHIP and Akt-dependent regulation of proliferation in the hematopoietic lineage.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2000
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...