GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • The Royal Society  (2)
  • Ravasi, Timothy  (2)
Materialart
Verlag/Herausgeber
  • The Royal Society  (2)
Sprache
Erscheinungszeitraum
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    The Royal Society ; 2019
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 374, No. 1768 ( 2019-03-18), p. 20180174-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 374, No. 1768 ( 2019-03-18), p. 20180174-
    Kurzfassung: How populations and species respond to modified environmental conditions is critical to their persistence both now and into the future, particularly given the increasing pace of environmental change. The process of adaptation to novel environmental conditions can occur via two mechanisms: (1) the expression of phenotypic plasticity (the ability of one genotype to express varying phenotypes when exposed to different environmental conditions), and (2) evolution via selection for particular phenotypes, resulting in the modification of genetic variation in the population. Plasticity, because it acts at the level of the individual, is often hailed as a rapid-response mechanism that will enable organisms to adapt and survive in our rapidly changing world. But plasticity can also retard adaptation by shifting the distribution of phenotypes in the population, shielding it from natural selection. In addition to which, not all plastic responses are adaptive—now well-documented in cases of ecological traps. In this theme issue, we aim to present a considered view of plasticity and the role it could play in facilitating or hindering adaption to environmental change. This introduction provides a re-examination of our current understanding of the role of phenotypic plasticity in adaptation and sets the theme issue's contributions in their broader context. Four key themes emerge: the need to measure plasticity across both space and time; the importance of the past in predicting the future; the importance of the link between plasticity and sexual selection; and the need to understand more about the nature of selection on plasticity itself. We conclude by advocating the need for cross-disciplinary collaborations to settle the question of whether plasticity will promote or retard species' rates of adaptation to ever-more stressful environmental conditions. This article is part of the theme issue ‘The role of plasticity in phenotypic adaptation to rapid environmental change’.
    Materialart: Online-Ressource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Sprache: Englisch
    Verlag: The Royal Society
    Publikationsdatum: 2019
    ZDB Id: 1462620-2
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    The Royal Society ; 2021
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 288, No. 1964 ( 2021-12-08)
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 288, No. 1964 ( 2021-12-08)
    Kurzfassung: Knowledge of adaptive potential is crucial to predicting the impacts of ocean acidification (OA) on marine organisms. In the spiny damselfish, Acanthochromis polyacanthus , individual variation in behavioural tolerance to elevated pCO 2 has been observed and is associated with offspring gene expression patterns in the brain. However, the maternal and paternal contributions of this variation are unknown. To investigate parental influence of behavioural pCO 2 tolerance, we crossed pCO 2 -tolerant fathers with pCO 2 -sensitive mothers and vice versa, reared their offspring at control and elevated pCO 2 levels, and compared the juveniles' brain transcriptional programme. We identified a large influence of parental phenotype on expression patterns of offspring, irrespective of environmental conditions. Circadian rhythm genes, associated with a tolerant parental phenotype, were uniquely expressed in tolerant mother offspring, while tolerant fathers had a greater role in expression of genes associated with histone binding. Expression changes in genes associated with neural plasticity were identified in both offspring types: the maternal line had a greater effect on genes related to neuron growth while paternal influence impacted the expression of synaptic development genes. Our results confirm cellular mechanisms involved in responses to varying lengths of OA exposure, while highlighting the parental phenotype's influence on offspring molecular phenotype.
    Materialart: Online-Ressource
    ISSN: 0962-8452 , 1471-2954
    Sprache: Englisch
    Verlag: The Royal Society
    Publikationsdatum: 2021
    ZDB Id: 1460975-7
    SSG: 12
    SSG: 25
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...