GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (1)
  • Rahaman, Mizanur M  (1)
Material
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (1)
Person/Organisation
Language
Years
  • 1
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 132, No. suppl_3 ( 2015-11-10)
    Abstract: Impaired soluble guanylyl cyclase (sGC)-dependent nitric oxide (NO) signaling has been linked to numerous cardiovascular diseases (CVD) such as hypertension, myocardial infarction and atherosclerosis. Despite emerging evidence indicating the importance of sGC function within the cardiovascular system, the basic mechanisms that regulate sGC activity remain incompletely understood. Herein, we provide in vitro and in vivo evidence that cytochrome b5 reductase 3 (Cyb5R3) is an sGC heme iron reductase and regulates downstream cGMP signaling. Of major significance, we also demonstrate that a Cyb5R3 T116S polymorphism with allele frequency of 0.23 in African Americans associates with increase blood pressure and is incapable of reducing sGC. Proximity ligation assay (PLA) experiments show that endogenous Cyb5R3 and oxidized sGC associate. Knockdown of Cyb5R3 results in reduced cGMP production and downstream signaling in rat aortic smooth muscle cells (SMC). Overexpression of Cyb5R3 not only rescues cGMP production but also increases baseline cGMP, whereas T116S mutant does not. Finally, inhibition of Cyb5R3 in mice significantly increases systemic blood pressure. Our studies are the first to identify an sGC heme iron reductase, provide evidence for Cyb5R3 as a key biological regulator of sGC activity and vascular tone in SMC, and link a human polymorphism of Cyb5R3 to increased blood pressure; all of which may lead to the development of novel therapeutics targeting Cyb5R3 for the treatment of CVD. Importantly, the co-expression of Cyb5R3 and sGC in multiple cells types suggests that this regulation of sGC activity may have broad applications for multiple physiological and pathophysiological processes. Results: Conclusions:
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...