GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Raghu, S.  (1)
  • Rost, A. W.  (1)
Material
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 40 ( 2011-10-04), p. 16549-16553
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 40 ( 2011-10-04), p. 16549-16553
    Abstract: The behavior of matter near zero temperature continuous phase transitions, or “quantum critical points” is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the quantum critical regime is unclear because of the apparent breakdown of the concept of the quasiparticle, a cornerstone of existing theories of strongly interacting metals. Even less is known experimentally about the formation of ordered phases from such a quantum critical “soup.” Here, we report a study of the specific heat across the phase diagram of the model system Sr 3 Ru 2 O 7 , which features an anomalous phase whose transport properties are consistent with those of an electronic nematic. We show that this phase, which exists at low temperatures in a narrow range of magnetic fields, forms directly from a quantum critical state, and contains more entropy than mean-field calculations predict. Our results suggest that this extra entropy is due to remnant degrees of freedom from the highly entropic state above T c . The associated quantum critical point, which is “concealed” by the nematic phase, separates two Fermi liquids, neither of which has an identifiable spontaneously broken symmetry, but which likely differ in the topology of their Fermi surfaces.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...