GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 21 ( 2022-05-24)
    Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged 〈 70 y and in 〉 4% of those 〉 70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals 〈 70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals 〈 40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science Immunology, American Association for the Advancement of Science (AAAS), Vol. 6, No. 62 ( 2021-08-10)
    Abstract: Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean, 36.7 years) from a cohort of 1202 male patients aged 0.5 to 99 years (mean, 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean, 38.7 years) tested carry such TLR7 variants ( P = 3.5 × 10 −5 ). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection ( n = 2) or moderate ( n = 1), severe ( n = 1), or critical ( n = 1) pneumonia. Two patients from a cohort of 262 male patients with severe COVID-19 pneumonia (mean, 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is 〈 6.5 × 10 −4 . We show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 . The patients’ blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.
    Type of Medium: Online Resource
    ISSN: 2470-9468
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science Immunology, American Association for the Advancement of Science (AAAS), Vol. 6, No. 62 ( 2021-08-10)
    Abstract: Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-α and/or IFN-ω are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or IFN-ω (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients 〉 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-β. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or IFN-ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% 〉 80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 〈 70 years, 2.3% between 70 and 80 years, and 6.3% 〉 80 years. By contrast, auto-Abs neutralizing IFN-β do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.
    Type of Medium: Online Resource
    ISSN: 2470-9468
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Genome Medicine, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2023-04-05)
    Abstract: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7 , with an OR of 27.68 (95%CI 1.5–528.7, P  = 1.1 × 10 −4 ) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P  = 2.1 × 10 −4 ). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P  = 3.4 × 10 −3 ), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P  = 7.7 × 10 −8 ). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P  = 1.68 × 10 −5 ). Conclusions Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.
    Type of Medium: Online Resource
    ISSN: 1756-994X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2484394-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 370, No. 6515 ( 2020-10-23)
    Abstract: Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cell, Elsevier BV, Vol. 184, No. 7 ( 2021-04), p. 1836-1857.e22
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Intervirology, S. Karger AG, Vol. 47, No. 6 ( 2004), p. 350-354
    Abstract: SEN virus (SENV) is a new family of single-stranded DNA viruses with eight different strains, A–H. The modifications in SENV DNA detection and subtype distribution were studied over a long-term follow-up (48 ± 32.5 months) in 52 HIV-infected patients. 46% of the patients in the first sample and 34.6% in the second sample were found to have detectable SENV viremia. While the most prevalent variant in the first sample was found to be genotype A (83.3%), the second sample revealed a broader subtype diversification. Several epidemiological and clinical variables were tested in univariate model for clearance of detectable SENV viremia, but none of them reached statistical significance. In conclusion, a high degree of instability of both SENV DNA detection and subtype distribution in a cohort of HIV-infected patients was suggested, which may have important implications for further studies on both SENV epidemiology and its clinical impact.
    Type of Medium: Online Resource
    ISSN: 0300-5526 , 1423-0100
    RVK:
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2004
    detail.hit.zdb_id: 1482863-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Open Forum Infectious Diseases, Oxford University Press (OUP), Vol. 8, No. Supplement_1 ( 2021-12-04), p. S77-S77
    Abstract: T cells are central to the early identification and clearance of viral infections and support antibody generation by B cells, making them desirable for assessing the immune response to SARS-CoV-2 infection and vaccines. We combined 2 high-throughput immune profiling methods to create a quantitative picture of the SARS-CoV-2 T-cell response that is highly sensitive, durable, diagnostic, and discriminatory between natural infection and vaccination. Methods We deeply characterized 116 convalescent COVID-19 subjects by experimentally mapping CD8 and CD4 T-cell responses via antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I and 284 class II viral peptides. We also performed T-cell receptor (TCR) repertoire sequencing on 1815 samples from 1521 PCR-confirmed SARS-CoV-2 cases and 3500 controls to identify shared public TCRs from SARS-CoV-2-associated CD8 and CD4 T cells. Combining these approaches with additional samples from vaccinated individuals, we characterized the response to natural infection as well as vaccination by separating responses to spike protein from other viral targets. Results We find that T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the SARS-CoV-2 T-cell response peaks about 1-2 weeks after infection and is detectable at least several months after recovery. Applying these data, we trained a classifier to diagnose past SARS-CoV-2 infection based solely on TCR sequencing from blood samples and observed, at 99.8% specificity, high sensitivity soon after diagnosis (Day 3–7 = 85.1%; Day 8–14 = 94.8%) that persists after recovery (Day 29+/convalescent = 95.4%). Finally, by evaluating TCRs binding epitopes targeting all non-spike SARS-CoV-2 proteins, we were able to separate natural infection from vaccination with & gt; 99% specificity. Conclusion TCR repertoire sequencing from whole blood reliably measures the adaptive immune response to SARS-CoV-2 soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points, and distinguishes post-infection vs. vaccine immune responses with high specificity. This approach to characterizing the cellular immune response has applications in clinical diagnostics as well as vaccine development and monitoring. Disclosures Thomas M. Snyder, PhD, Adaptive Biotechnologies (Employee, Shareholder) Rachel M. Gittelman, PhD, Adaptive Biotechnologies (Employee, Shareholder) Mark Klinger, PhD, Adaptive Biotechnologies (Employee, Shareholder) Damon H. May, PhD, Adaptive Biotechnologies (Employee, Shareholder) Edward J. Osborne, PhD, Adaptive Biotechnologies (Employee, Shareholder) Ruth Taniguchi, PhD, Adaptive Biotechnologies (Employee, Shareholder) H. Jabran Zahid, PhD, Microsoft Research (Employee, Shareholder) Rebecca Elyanow, PhD, Adaptive Biotechnologies (Employee, Shareholder) Sudeb C. Dalai, MD, PhD, Adaptive Biotechnologies (Employee, Shareholder) Ian M. Kaplan, PhD, Adaptive Biotechnologies (Employee, Shareholder) Jennifer N. Dines, MD, Adaptive Biotechnologies (Employee, Shareholder) Matthew T. Noakes, PhD, Adaptive Biotechnologies (Employee, Shareholder) Ravi Pandya, PhD, Microsoft Research (Employee, Shareholder) Lance Baldo, MD, Adaptive Biotechnologies (Employee, Shareholder, Leadership Interest) James R. Heath, PhD, Merck (Research Grant or Support, Funding (from BARDA) for the ISB INCOV project, but had no role in planning the research or in writing the paper.) Joaquin Martinez-Lopez, MD, PhD, Adaptive Biotechnologies (Consultant) Jonathan M. Carlson, PhD, Microsoft Research (Employee, Shareholder) Harlan S. Robins, PhD, Adaptive Biotechnologies (Board Member, Employee, Shareholder)
    Type of Medium: Online Resource
    ISSN: 2328-8957
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2757767-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Translational Medicine, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2012-12)
    Abstract: The immune system reconstitution in HIV-1- infected patients undergoing combined antiretroviral therapy is routinely evaluated by T-cell phenotyping, even though the infection also impairs the B-cell mediated immunity. To find new laboratory markers of therapy effectiveness, both B- and T- immune recovery were evaluated by means of a follow-up study of long-term treated HIV-1- infected patients, with a special focus on the measure of new B- and T-lymphocyte production. Methods A longitudinal analysis was performed in samples obtained from HIV-1-infected patients before therapy beginning and after 6, 12, and 72 months with a duplex real-time PCR allowing the detection of K-deleting recombination excision circles (KRECs) and T-cell receptor excision circles (TRECs), as measures of bone-marrow and thymic output, respectively. A cross sectional analysis was performed to detect B- and T-cell subsets by flow cytometry in samples obtained at the end of the follow-up, which were compared to those of untreated HIV-1-infected patients and uninfected controls. Results The kinetics and the timings of B- and T-cell release from the bone marrow and thymus during antiretroviral therapy were substantially different, with a decreased B-cell release and an increased thymic output after the prolonged therapy. The multivariable regression analysis showed that a longer pre-therapy infection duration predicts a minor TREC increase and a major KREC reduction. Conclusions The quantification of KRECs and TRECs represents an improved method to monitor the effects of therapies capable of influencing the immune cell pool composition in HIV-1-infected patients.
    Type of Medium: Online Resource
    ISSN: 1479-5876
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2118570-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Biology of Sex Differences, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2021-12)
    Type of Medium: Online Resource
    ISSN: 2042-6410
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2587352-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...