GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Science, Portland Press Ltd., Vol. 132, No. 3 ( 2018-02-14), p. 339-359
    Abstract: Histone deacetylase 6 (HDAC6) has been shown to be involved in various pathological conditions, including cancer, neurodegenerative disorders and inflammatory diseases. Nonetheless, its specific role in drug-induced nephrotoxicity is poorly understood. Cisplatin (dichlorodiamino platinum) belongs to an inorganic platinum – fundamental chemotherapeutic drug utilized in the therapy of various solid malignant tumors. However, the use of cisplatin is extremely limited by obvious side effects, for instance bone marrow suppression and nephrotoxicity. In the present study, we utilized a murine model of cisplatin-induced acute kidney injury (AKI) and a highly selective inhibitor of HDAC6, tubastatin A (TA), to assess the role of HDAC6 in nephrotoxicity and its associated mechanisms. Cisplatin-induced AKI was accompanied by increased expression and activation of HDAC6; blocking HDAC6 with TA lessened renal dysfunction, attenuated renal pathological changes, reduced expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule 1, and decreased tubular cell apoptosis. In cultured human epithelial cells, TA or HDAC6 siRNA treatment also inhibited cisplatin-induced apoptosis. Mechanistic studies demonstrated that cisplatin treatment induced phosphorylation of AKT and loss of E-cadherin in the nephrotoxic kidney, and administration of TA enhanced AKT phosphorylation and preserved E-cadherin expression. HDAC6 inhibition also potentiated autophagy as evidenced by increased expression of autophagy-related gene (Atg) 7 (Atg7), Beclin-1, and decreased renal oxidative stress as demonstrated by up-regulation of superoxide dismutase (SOD) activity and down-regulation of malondialdehyde levels. Moreover, TA was effective in inhibiting nuclear factor-κ B (NF-κB) phosphorylation and suppressing the expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Collectively, these data provide strong evidence that HDAC6 inhibition is protective against cisplatin-induced AKI and suggest that HDAC6 may be a potential therapeutic target for AKI treatment.
    Type of Medium: Online Resource
    ISSN: 0143-5221 , 1470-8736
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genes & Diseases, Elsevier BV, ( 2023-6)
    Type of Medium: Online Resource
    ISSN: 2352-3042
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2821806-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Kidney International, Elsevier BV, Vol. 103, No. 3 ( 2023-03), p. 544-564
    Type of Medium: Online Resource
    ISSN: 0085-2538
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2007940-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2015
    In:  Journal of the American Society of Nephrology Vol. 26, No. 11 ( 2015-11), p. 2716-2729
    In: Journal of the American Society of Nephrology, Ovid Technologies (Wolters Kluwer Health), Vol. 26, No. 11 ( 2015-11), p. 2716-2729
    Type of Medium: Online Resource
    ISSN: 1046-6673
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    detail.hit.zdb_id: 2029124-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Pharmacology Vol. 12 ( 2021-8-30)
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 12 ( 2021-8-30)
    Abstract: Aims: Influenced by microenvironment, human peritoneal mesothelial cells (HPMCs) acquired fibrotic phenotype, which was identified as the protagonist for peritoneal fibrosis. In this study, we examined the role of histone deacetylase 6 (HDAC6) for interleukin-6 (IL-6) induced epithelial-mesenchymal transition (EMT), proliferation, and migration of HPMCs. Methods: The role of HDAC6 in IL-6-elicited EMT of HPMCs was tested by morphological observation of light microscope, immunoblotting, and immune-fluorescence assay; and the function of HDAC6 in proliferation and migration of HPMCs was examined by CCK-8 assay, wound healing experiment, and immunoblotting. Results: IL-6 stimulation significantly increased the expression of HDAC6. Treatment with tubastatin A (TA), a highly selective HDAC6 inhibitor, or silencing of HDAC6 with siRNA decreased the expression of HDAC6. Moreover, TA or HDAC6 siRNA suppressed IL-6-induced EMT, as evidenced by decreased expressions of α-SMA, Fibronectin, and collagen I and the preserved expression of E-cadherin in cultured HPMCs. Mechanistically, HDAC6 inhibition suppressed the expression of transforming growth factor β (TGFβ) receptor I (TGFβRI), phosphorylation of Smad3, secretion of connective tissue growth factor (CTGF), and transcription factor Snail. On the other hand, the pharmacological inhibition or genetic target of HDAC6 suppressed HPMCs proliferation, as evidenced by the decreased optical density of CCK-8 and the expressions of PCNA and Cyclin E. The migratory rate of HPMCs also decreased. Mechanistically, HDAC6 inhibition blocked the activation of JAK2 and STAT3. Conclusion: Our study illustrated that IL-6-induced HDAC6 not only regulated IL-6 itself downstream JAK2/STAT3 signaling but also co-activated the TGF-β/Smad3 signaling, leading to the change of the phenotype and mobility of HPMCs. HDAC6 could be a potential therapeutic target for the prevention and treatment of peritoneal fibrosis.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Molecular Biomedicine, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2024-01-04)
    Abstract: The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.
    Type of Medium: Online Resource
    ISSN: 2662-8651
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 3033856-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Cell Death & Disease Vol. 11, No. 6 ( 2020-06-17)
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 11, No. 6 ( 2020-06-17)
    Abstract: Autophagy is a cell self-renewal process that relies on the degradation of the cytoplasmic proteins or organelles of lysosomes and is associated with development of numerous diseases. However, the therapeutic effect of autophagy inhibition on hyperuricemic nephropathy (HN) and the underlying mechanisms are still unknown. Here, we investigated the effect of delayed treatment with 3-methyladenine (3-MA), a specific autophagy inhibitor, on the development of HN in a rat model. Administration of 3-MA at 21 days following after uric acid injury protected kidney from hyperuricemic-related injuries, as demonstrated by improving renal dysfunction and architecture damage, blocking Beclin-1 and LC3II/I and decreasing the number of autophagic vacuoles. Late treatment with 3-MA was also effective in attenuating renal fibrosis as evidenced by reducing ECM protein deposition, blocking epithelial-to-mesenchymal transition (EMT) and decreasing the number of renal epithelial cells arrested at the G2/M phase of cell cycle. Injury to the kidney resulted in increased expression of TGFβ receptor I, and phosphorylation of Smad3, 3-MA significantly abrogated all these responses. Moreover, inhibition of autophagy suppressed mitochondrial fission, downregulated the expression of Dynamin-related protein 1 (Drp-1), Cofilin and F-actin, and alleviated cell apoptosis. Finally, 3-MA effectively blocked STAT3 and NF-κB phosphorylation and suppressed infiltration of macrophages and lymphocytes as well as release of multiple profibrogenic cytokines/chemokines in the injured kidney. Taken together, these findings indicate that hyperuricemia-induced autophagy is critically involved in the activation of renal fibroblasts, EMT, mitochondrial fission and apoptosis of tubular epithelial cells and development of renal fibrosis. Thus, this study provides evidence for autophagy inhibitors as the treatment of HN patients.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2541626-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2016
    In:  Journal of the American Society of Nephrology Vol. 27, No. 9 ( 2016-9), p. 2631-2644
    In: Journal of the American Society of Nephrology, Ovid Technologies (Wolters Kluwer Health), Vol. 27, No. 9 ( 2016-9), p. 2631-2644
    Abstract: Inhibitors of EGF receptor (EGFR) have antifibrotic effects in several organs, but the effect of these inhibitors on the development of peritoneal fibrosis is unknown. Here, we explored the therapeutic effect of gefitinib, a specific inhibitor of EGFR, on the development and progression of peritoneal fibrosis in a rat model. Daily intraperitoneal injections of chlorhexidine gluconate induced peritoneal fibrosis, indicated by thickening of the submesothelial area with an accumulation of collagen fibrils and activation of myofibroblasts, accompanied by time-dependent phosphorylation of EGFR. Administration of gefitinib immediately after injury prevented the onset of peritoneal fibrosis and delayed administration after the onset of peritoneal fibrosis halted fibrosis progression. Gefitinib treatment abrogated the increased phosphorylation of EGFR, Smad3, signal transducer and activator of transcription 3, and NF- κ B during peritoneal fibrosis; it also inhibited the accompanying overproduction of TGF- β 1 and proinflammatory cytokines and the infiltration of macrophages to the injured peritoneum. Moreover, gefitinib significantly reduced the peritoneal increase of CD31-positive blood vessels and vascular EGF-positive cells after injury. Finally, gefitinib also attenuated high glucose–induced peritoneal fibrosis in rats and abrogated TGF- β 1–induced phosphorylation of Smad3 and the epithelial-to-mesenchymal transition of cultured human peritoneal mesothelial cells. These results demonstrate that EGFR contributes to peritoneal fibrosis, inflammation, and angiogenesis, suggesting that EGFR inhibitors may have therapeutic potential in attenuating peritoneal fibrosis.
    Type of Medium: Online Resource
    ISSN: 1046-6673 , 1533-3450
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2016
    detail.hit.zdb_id: 2029124-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Physiological Society ; 2017
    In:  American Journal of Physiology-Renal Physiology Vol. 312, No. 3 ( 2017-03-01), p. F502-F515
    In: American Journal of Physiology-Renal Physiology, American Physiological Society, Vol. 312, No. 3 ( 2017-03-01), p. F502-F515
    Abstract: Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment.
    Type of Medium: Online Resource
    ISSN: 1931-857X , 1522-1466
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2017
    detail.hit.zdb_id: 1477287-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Oncotarget, Impact Journals, LLC, Vol. 8, No. 51 ( 2017-10-24), p. 88730-88750
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...