GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 1892-1892
    Abstract: Memory B cells (MBCs) remain viable in a non-proliferative state for years. These cells express genes involved in cell survival and anti-apoptotic factors, while repress the expression of cell cycle regulatory genes. During their differentiation into plasma cells (PCs), these cells develop an opposite gene expression pattern, with a higher expression of genes implicated in cell proliferation and activation, and a lower expression of survival genes. In multiple myeloma (MM) the PCs accumulate into the bone marrow due, at least in part, to failure of pro-apoptotic mechanisms normally expressed in PCs. In the present study we analyzed the gene expression patterns of MBCs and PCs from healthy donors and patients with MM, in order to determine whether or not myelomatous PCs share characteristics of MBCs and/or normal PCs, and to identify possible genes related to the pathophysiology of the disease. Methods MBCs were obtained by immunomagnetic separation from buffy coats of 5 aged healthy donors. Likewise, PCs were isolated from bone marrow of 6 healthy donors and of 5 patients with MM. Using microarray techniques we analyzed the expression of 45000 genes in all samples. We performed unsupervised hierarchical cluster of gene expression data using the average linkage and the Euclidean distance. To identify differentially expressed genes among experimental groups we applied non-parametric Kruskal Wallis test. The differences in expression with a p value 〈 0.05 were considered significant. All analyses were performed using the Multi-experiment Viewer 4.7.1 software. Results From the hierarchical cluster obtained we clearly identified two groups, one which included normal PCs samples and the other one containing myelomatous PCs and MBCs. Interestingly, myelomatous PCs displayed intermediate features between MBCs and normal PCs (Figure 1). We found 5159 genes differentially expressed between normal and myelomatous PCs. Among these, we identified 3455 genes which displayed a similar expression pattern between MBCs and myelomatous PCs, including caspases inhibitors, MAP kinases, ubiquitins, transcription and translation factors. Conclusion Myelomatous PCs display an intermediate gene expression pattern between normal PCs and MBCs. These cells display high expression of genes involved in cell survival that should be normally inactivated in the transit of MBC to a normal PC, so that its expression pattern is closer to a MBC than a normal PC. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 4893-4893
    Abstract: Memory B cells (MBCs) have a very long half-life, remaining viable in a quiescent state for years. However, elderly individuals have less amount of MBCs and they produce lower amounts of antibodies. Thus, in aged individuals immunization become less efficient in terms of quantity and quality. Furthermore, several hematologic malignancies involving B-cell lineage, such as non-Hodgkin lymphomas, chronic lymphocytic leukemia or multiple myeloma, are increasingly common in aging population. With this background, we analyzed the gene expression patterns of naïve B cells (NBCs) versus MBCs in both younger and older subjects, in order to identify genes related to longevity that could be altered in the elderly population and related to an increased risk of developing certain lymphoid malignancies. Methods NBCs and MBCs were obtained by immunomagnetic separation from buffy coats of 10 healthy donors: 5 young (20-25 years) and 5 elderly (65-70 years). By microarray techniques we analyzed the expression of 45000 genes in all samples. Unsupervised hierarchical clusters of gene expression data were performed using the average linkage and the Euclidean distance. To identify differentially expressed genes between experimental groups we applied non-parametric Mann-Whitney test. The differences in expression with a p value 〈 0.05 were considered significant. All analyses were performed using the Multi-experiment Viewer 4.7.1 software. Results Firstly, we confirmed that the expression pattern of NBCs versus MBCs is significanly different in 3548 genes in young and 2145 genes in elderly individuals. Next, in order to evaluate the effect of age in NBCs and MBCs, we compared the gene expression pattern of young versus aged subjects in both cell populations. Interestingly, we did not find significant differences in the naïve population between young and aged individuals, whereas we found 1593 genes differentially expressed in young versus elderly subjects within MBCs; therefore, age affects the gene expression pattern of MBCs but not NBCs. Furthermore, we identified 467 genes which displayed a higher or lower expression in MBCs from aged as compared to younger individuals and NBCs, most of them involved in proliferation and cell cycle, apoptosis, cell survival and hematological diseases (Table 1). Conclusions Gene expression profiles of NBCs and MBCs are different. While there are no significant differences in NBCs of young versus elderly individuals, we detected significant differences in expression patterns of MBCs between both age groups, which indicates that MBCs could be more susceptible to age related alterations. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3020-3020
    Abstract: Abstract 3020 Introduction: Hematopoietic progenitors cells (HPCs) used in allogenic transplantation (allo-HSCT) may have different biological properties depending on their source of origin: mobilized peripheral blood (PB), bone marrow (BM) or umbilical cord (UC), which may be reflected in miRNAs or gene expression. The identification of different patterns of expression could have clinical implications. The aim of this study was to determine differences in miRNAs and gene expression patterns in the different sources of HPCs used in allo-HSCT. Materials and Method: CD34 + cells were isolated by immunomagnetic separation and sorting from 5 healthy donors per type of source: UC, BM and PB mobilized with G-CSF. A pool of samples from PB not mobilized was used as reference group. We analyzed the expression of 375 miRNAs using TaqMan MicroRNA Arrays Human v2.0 (Applied Biosystems), and gene expression using Whole Human Genome Oligo microarray kit 4×44K (Agilent). The expression levels of genes and miRNAs were obtained by the 2-ΔΔCTmethod. From expression data hierarchical clustering was performed using the Euclidean distance. To identify genes and miRNAs differentially expressed between the different sources of HPCs statistical Kruskal Wallis test was applied. All analysis were performed using the Multiexperiment Viewer 4.7.1. The function of the miRNAs and genes of interest was determined from the various databases available online (TAM database, Gene Ontology and TargetScan Human). Results: Forty-two miRNAs differentially expressed between the different sources were identified. As compared to BM or UC, in mobilized PB most miRNAs were overexpressed, including the miRNA family of miR515, which is characteristic of embryonic stem cells. On the other hand, 47 genes differentially expressed between the different sources were identified. Interestingly, a similar pattern of expression was observed between movilized PB and UC as compared to BM. Interestingly, 13 of these genes are targets of the miRNAs also identified in this study, which suggests that their expression might be regulated by these miRNAs. Conclusion: There are significant differences in miRNAs and gene expression levels between the different sources of HPCs Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...