GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
  • Pierre, Joseph F.  (2)
Material
Publisher
  • American Physiological Society  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Physiological Genomics, American Physiological Society, Vol. 54, No. 1 ( 2022-01-01), p. 22-35
    Abstract: Broad cellular functions and diseases including muscular dystrophy, arrhythmogenic right ventricular cardiomyopathy (ARVC5) and cancer are associated with transmembrane protein43 (TMEM43/ LUMA). The study aimed to investigate biological roles of TMEM43 through genetic regulation, gene pathways and gene networks, candidate interacting genes, and up- or downstream regulators. Cardiac transcriptomes from 40 strains of recombinant inbred BXD mice and two parental strains representing murine genetic reference population (GRP) were applied for genetic correlation, functional enrichment, and coexpression network analysis using systems genetics approach. The results were validated in a newly created knock-in Tmem43-S358L mutation mouse model (Tmem43 S358L ) that displayed signs of cardiac dysfunction, resembling ARVC5 phenotype seen in humans. We found high Tmem43 levels among BXDs with broad variability in expression. Expression of Tmem43 highly negatively correlated with heart mass and heart rate among BXDs, whereas levels of Tmem43 highly positively correlated with plasma high-density lipoproteins (HDL). Through finding differentially expressed genes (DEGs) between Tmem43 S358L mutant and wild-type (Tmem43 WT ) lines, 18 pathways (out of 42 found in BXDs GRP) that are involved in ARVC, hypertrophic cardiomyopathy, dilated cardiomyopathy, nonalcoholic fatty liver disease, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease were verified. We further constructed Tmem43-mediated gene network, in which Ctnna1, Adcy6, Gnas, Ndufs6, and Uqcrc2 were significantly altered in Tmem43 S358L mice versus Tmem43 WT controls. Our study defined the importance of Tmem43 for cardiac- and metabolism-related pathways, suggesting that cardiovascular disease-relevant risk factors may also increase risk of metabolic and neurodegenerative diseases via TMEM43-mediated pathways.
    Type of Medium: Online Resource
    ISSN: 1094-8341 , 1531-2267
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2031330-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 324, No. 6 ( 2023-06-01), p. H866-H880
    Abstract: The transmembrane protein 43 (TMEM43/LUMA) p.S358L mutation causes arrhythmogenic cardiomyopathy named as ARVC5, a fully penetrant disease with high risk of ventricular arrhythmias, sudden death, and heart failure. Male gender and vigorous exercise independently predicted deleterious outcome. Our systems genetics analysis revealed the importance of Tmem43 for cardiac and metabolic pathways associated with elevated lipid absorption from small intestine. This study sought to delineate gender-specific cardiac, intestinal, and metabolic phenotypes in vivo and investigate underlying pathophysiological mechanisms of S358L mutation. Serial echocardiography, surface electrocardiography (ECG), treadmill running, and body EchoMRI have been used in knock-in heterozygous (Tmem43 WT/S358L ), homozygous (Tmem43 S358L ), and wildtype (Tmem43 WT ) littermate mice. Electron microscopy, histology, immunohistochemistry, transcriptome, and protein analysis have been performed in cardiac and intestinal tissues. Systolic dysfunction was apparent in 3-mo-old Tmem43 S358L and 6-mo-old Tmem43 WT/S358L mutants. Both mutant lines displayed intolerance to acute stress at 6 mo of age, arrhythmias, fibro-fatty infiltration, and subcellular abnormalities in the myocardium. Microarray analysis found significantly differentially expressed genes between left ventricular (LV) and right ventricular (RV) myocardium. Mutants displayed diminished PPARG activities and significantly reduced TMEM43 and β-catenin expression in the heart, whereas junctional plakoglobin (JUP) translocated into nuclei of mutant cardiomyocytes. Conversely, elongated villi, fatty infiltration, and overexpression of gut epithelial proliferation markers, β-catenin and Ki-67, were evident in small intestine of mutants. We defined Tmem43 S358L-induced pathological effects on cardiac and intestinal homeostasis via distinctly disturbed WNT-β-catenin and PPARG signaling thereby contributing to ARVC5 pathophysiology. Results suggest that cardiometabolic assessment in mutation carriers may be important for predictive and personalized care. NEW & NOTEWORTHY This manuscript describes the findings of our investigation of cardiac, small intestine, and metabolic features of Tmem43-S358L mouse model. By investigating interorgan pathologies, we uncovered multiple mechanisms of the S358L-induced disease, and these unique mechanisms likely appear to contribute to the disease pathogenesis. We hope our findings are important and novel and open new avenues in the hunting for additional diagnostic and therapeutic targets in subjects carrying TMEM43 mutation.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2023
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...