GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pickart, Robert S.  (1)
Material
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Oceans Vol. 101, No. C9 ( 1996-09-15), p. 20711-20726
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 101, No. C9 ( 1996-09-15), p. 20711-20726
    Abstract: A new type of submesoscale eddy has been observed south of the Labrador Sea during late winter, embedded in equatorward flow along the western boundary. The eddy radius is 20 km, with a weak dynamic signature (swirl speed of 0.5 cm/s). The center of the eddy is characterized by weak stratification, elevated concentrations of oxygen and anthropogenic tracers, and low tracer ages, all indicative of newly ventilated water. Strong lateral intrusions distort the shape of the feature. The water mass contained in the eddy is not classical Labrador Sea water (from the central Labrador Sea) but is significantly fresher and hence lighter. It is of the correct density to be the source of the high‐chlorofluorocarbon layer of the shallow deep western boundary current observed further south and hence is termed upper Labrador Sea water. Using a combination of hydrographic data sets along the western boundary to implement a simple lateral diffusion model, it is shown that such eddies decay of the order of several months and are difficult to observe equatorward of the Grand Banks of Newfoundland. This is in contrast to deeper lenses of classical Labrador Sea water which persist further equatorward. Tracer‐derived ages of the upper Labrador Sea water eddy range from 3 to 5 years, much older than the lifetime deduced from their lateral diffusion. A simple convection model of tracer age shows that this age discrepancy is caused by gas exchange being unable to maintain equilibrium between the deep convecting mixed layer and the atmosphere during formation.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...