GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Microbial Biotechnology, Wiley, Vol. 10, No. 2 ( 2017-03), p. 469-479
    Abstract: The formation water of a deep aquifer (853 m of depth) used for geological storage of natural gas was sampled to assess the mono‐aromatic hydrocarbons attenuation potential of the indigenous microbiota. The study of bacterial diversity suggests that Firmicutes and, in particular, sulphate‐reducing bacteria ( Peptococcaceae ) predominate in this microbial community. The capacity of the microbial community to biodegrade toluene and m ‐ and p ‐xylenes was demonstrated using a culture‐based approach after several hundred days of incubation. In order to reveal the potential for biodegradation of these compounds within a shorter time frame, an innovative approach named the solution hybrid selection method, which combines sequence capture by hybridization and next‐generation sequencing, was applied to the same original water sample. The bssA and bssA ‐like genes were investigated as they are considered good biomarkers for the potential of toluene and xylene biodegradation. Unlike a PCR approach which failed to detect these genes directly from formation water, this innovative strategy demonstrated the presence of the bssA and bssA ‐like genes in this oligotrophic ecosystem, probably harboured by Peptococcaceae . The sequence capture by hybridization shows significant potential to reveal the presence of genes of functional interest which have low‐level representation in the biosphere.
    Type of Medium: Online Resource
    ISSN: 1751-7915 , 1751-7915
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2406063-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-10-13)
    Abstract: Deep aquifers (up to 2km deep) contain massive volumes of water harboring large and diverse microbial communities at high pressure. Aquifers are home to microbial ecosystems that participate in physicochemical balances. These microorganisms can positively or negatively interfere with subsurface (i) energy storage (CH 4 and H 2 ), (ii) CO 2 sequestration; and (iii) resource (water, rare metals) exploitation. The aquifer studied here (720m deep, 37°C, 88bar) is naturally oligotrophic, with a total organic carbon content of & lt;1mg.L −1 and a phosphate content of 0.02mg.L −1 . The influence of natural gas storage locally generates different pressures and formation water displacements, but it also releases organic molecules such as monoaromatic hydrocarbons at the gas/water interface. The hydrocarbon biodegradation ability of the indigenous microbial community was evaluated in this work. The in situ microbial community was dominated by sulfate-reducing (e.g., Sva0485 lineage, Thermodesulfovibriona, Desulfotomaculum , Desulfomonile , and Desulfovibrio ), fermentative (e.g., Peptococcaceae SCADC1_2_3, Anaerolineae lineage and Pelotomaculum ), and homoacetogenic bacteria (“ Candidatus Acetothermia”) with a few archaeal representatives (e.g., Methanomassiliicoccaceae , Methanobacteriaceae , and members of the Bathyarcheia class), suggesting a role of H 2 in microenvironment functioning. Monoaromatic hydrocarbon biodegradation is carried out by sulfate reducers and favored by concentrated biomass and slightly acidic conditions, which suggests that biodegradation should preferably occur in biofilms present on the surfaces of aquifer rock, rather than by planktonic bacteria. A simplified bacterial community, which was able to degrade monoaromatic hydrocarbons at atmospheric pressure over several months, was selected for incubation experiments at in situ pressure (i.e., 90bar). These showed that the abundance of various bacterial genera was altered, while taxonomic diversity was mostly unchanged. The candidate phylum Acetothermia was characteristic of the community incubated at 90bar. This work suggests that even if pressures on the order of 90bar do not seem to select for obligate piezophilic organisms, modifications of the thermodynamic equilibria could favor different microbial assemblages from those observed at atmospheric pressure.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...