GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Peterson, Thomas A  (3)
Material
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  BMC Genomics Vol. 14, No. S3 ( 2013-05)
    In: BMC Genomics, Springer Science and Business Media LLC, Vol. 14, No. S3 ( 2013-05)
    Abstract: The body of disease mutations with known phenotypic relevance continues to increase and is expected to do so even faster with the advent of new experimental techniques such as whole-genome sequencing coupled with disease association studies. However, genomic association studies are limited by the molecular complexity of the phenotype being studied and the population size needed to have adequate statistical power. One way to circumvent this problem, which is critical for the study of rare diseases, is to study the molecular patterns emerging from functional studies of existing disease mutations. Current gene-centric analyses to study mutations in coding regions are limited by their inability to account for the functional modularity of the protein. Previous studies of the functional patterns of known human disease mutations have shown a significant tendency to cluster at protein domain positions, namely position-based domain hotspots of disease mutations. However, the limited number of known disease mutations remains the main factor hindering the advancement of mutation studies at a functional level. In this paper, we address this problem by incorporating mutations known to be disruptive of phenotypes in other species. Focusing on two evolutionarily distant organisms, human and yeast, we describe the first inter-species analysis of mutations of phenotypic relevance at the protein domain level. Results The results of this analysis reveal that phenotypic mutations from yeast cluster at specific positions on protein domains, a characteristic previously revealed to be displayed by human disease mutations. We found over one hundred domain hotspots in yeast with approximately 50% in the exact same domain position as known human disease mutations. Conclusions We describe an analysis using protein domains as a framework for transferring functional information by studying domain hotspots in human and yeast and relating phenotypic changes in yeast to diseases in human. This first-of-a-kind study of phenotypically relevant yeast mutations in relation to human disease mutations demonstrates the utility of a multi-species analysis for advancing the understanding of the relationship between genetic mutations and phenotypic changes at the organismal level.
    Type of Medium: Online Resource
    ISSN: 1471-2164
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2041499-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  BMC Genomics Vol. 13, No. S4 ( 2012-06)
    In: BMC Genomics, Springer Science and Business Media LLC, Vol. 13, No. S4 ( 2012-06)
    Abstract: Large-scale tumor sequencing projects are now underway to identify genetic mutations that drive tumor initiation and development. Most studies take a gene-based approach to identifying driver mutations, highlighting genes mutated in a large percentage of tumor samples as those likely to contain driver mutations. However, this gene-based approach usually does not consider the position of the mutation within the gene or the functional context the position of the mutation provides. Here we introduce a novel method for mapping mutations to distinct protein domains, not just individual genes, in which they occur, thus providing the functional context for how the mutation contributes to disease. Furthermore, aggregating mutations from all genes containing a specific protein domain enables the identification of mutations that are rare at the gene level, but that occur frequently within the specified domain. These highly mutated domains potentially reveal disruptions of protein function necessary for cancer development. Results We mapped somatic mutations from the protein coding regions of 100 colon adenocarcinoma tumor samples to the genes and protein domains in which they occurred, and constructed topographical maps to depict the “mutational landscapes” of gene and domain mutation frequencies. We found significant mutation frequency in a number of genes previously known to be somatically mutated in colon cancer patients including APC , TP53 and KRAS . In addition, we found significant mutation frequency within specific domains located in these genes, as well as within other domains contained in genes having low mutation frequencies. These domain “peaks” were enriched with functions important to cancer development including kinase activity, DNA binding and repair, and signal transduction. Conclusions Using our method to create the domain landscapes of mutations in colon cancer, we were able to identify somatic mutations with high potential to drive cancer development. Interestingly, the majority of the genes involved have a low mutation frequency. Therefore, themethod shows good potential for identifying rare driver mutations in current, large-scale tumor sequencing projects. In addition, mapping mutations to specific domains provides the necessary functional context for understanding how the mutations contribute to the disease, and may reveal novel or more refined gene and domain target regions for drug development.
    Type of Medium: Online Resource
    ISSN: 1471-2164
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2041499-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2012
    In:  Journal of the American Medical Informatics Association Vol. 19, No. 2 ( 2012-03), p. 275-283
    In: Journal of the American Medical Informatics Association, Oxford University Press (OUP), Vol. 19, No. 2 ( 2012-03), p. 275-283
    Type of Medium: Online Resource
    ISSN: 1067-5027 , 1527-974X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2012
    detail.hit.zdb_id: 2018371-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...