GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 202-202
    Abstract: Chemo-protection of gene-modified cells with mutant forms of methylguanine methyltransferase (MGMT) has the potential to increase the efficacy of clinical hematopoietic stem cell gene therapy. The therapeutic benefits of MGMT gene-modified cells are due to two factors: in vivo selection following transplantation to increase the level of cells that carry MGMT and a therapeutic transgene for genetic diseases or inhibitory transgenes for acquired diseases such as AIDS andhematopoietic protection from chemotherapy agents such as BCNU and temozolomide (TMZ) during treatment of malignant diseases. In the allogeneic and autologous canine models we have demonstrated efficient engraftment, in vivo selection, and chemo-protection of MGMT gene-modified cells and increased gene-marking levels to 〉 90%. Unequivocal proof that true ‘stem cells’ are the transduced population leading to long-term engraftment and gene-marking is elusive and the only reliable test is sustained engraftment in the large animal model (i.e. canine or non-human primates). To further test the durability and engraftment potential of MGMT gene-modified canine cells, we investigated three aspects:engraftment and repopulation in a primary recipient,durability during in vivo selection, andengraftment and repopulation in a secondary recipient. Briefly, two DLA-identical allogeneic transplants were carried out with CD34-selected cells using an 18-hour transduction protocol. Cells were transduced with a VSVG-pseudotyped lentiviral vector expressing only the mutant version of MGMT(P140K). Cells were infused into primary recipients (G340 and G403) after pre-transplant conditioning with 200 cGy total body irradiation (TBI). G340 and G403 received multiple rounds of in vivo selection comprising 4 and 3 treatments with O6-benzylguanine (O6BG)/TMZ and 1 and 2 treatments with O6BG/BCNU respectively. Gene-marking stabilized in G340 and G403 after the final round of in vivo selection at about 60% and 4% respectively for at least 3 months before we proceeded to secondary transplantation. The original donors (G346 and G404) were conditioned with 920cGy TBI before receiving whole bone marrow cells from the primary recipients G340 and G403 respectively. Both G346 and G404 recovered neutrophil and platelet counts within expected time frames compared to historical controls. Shortly after transplantation the gene-marking in G346 stabilized around 80% and this level has been maintained for more than 1 year without in vivo selection. The gene-marking in G404 stabilized around 1% shortly after transplantation and this level was maintained until recently when in vivo selection was carried out in both G404 and G403 to increase gene-marking levels. Multiple clones contributed to hematopoietic repopulation in the primary and secondary recipients and we are in the process of tracking shared clones in the animals. These data establish the durability of MGMT(P140K) gene-modified cells and also present convincing evidence that true hematopoietic stem cells were transduced during the 18-hour transduction. This study demonstrates that MGMT(P140K) gene-modified cells repopulate a primary recipient and subsequently survive multiple rounds of in vivo selection while maintaining engraftment and repopulation potential in a secondary recipient.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Human Gene Therapy, Mary Ann Liebert Inc, Vol. 18, No. 5 ( 2007-05), p. 451-456
    Type of Medium: Online Resource
    ISSN: 1043-0342 , 1557-7422
    Language: English
    Publisher: Mary Ann Liebert Inc
    Publication Date: 2007
    detail.hit.zdb_id: 1498064-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2005
    In:  Blood Vol. 105, No. 3 ( 2005-02-01), p. 997-1002
    In: Blood, American Society of Hematology, Vol. 105, No. 3 ( 2005-02-01), p. 997-1002
    Abstract: Incorporation of drug resistance genes into gene vectors has 2 important roles in stem cell gene therapy: increasing the proportion of gene-corrected cells in vivo (ie, in vivo selection) and marrow protection to permit higher or more tightly spaced doses of chemotherapy in the treatment of malignant diseases. We studied in a clinically relevant canine model of gene therapy the P140K mutant of the drug resistance gene methylguanine methyltransferase (MGMT), which encodes a DNA-repair enzyme that confers resistance to the combination of the MGMT inhibitor O6-benzylguanine (O6BG) and nitrosourea drugs such as carmustine and methylating agents such as temozolomide. Two dogs received MGMT(P140K)–transduced autologous CD34+-selected cells. After stable engraftment, gene marking in granulocytes was between 3% and 16% in the 2 animals, respectively. Repeated administration of O6BG and temozolomide resulted in a multilineage increase in gene-modified repopulating cells with marking levels of greater than 98% in granulocytes. MGMT(P140K) overexpression prevented the substantial myelosuppression normally associated with this drug combination. Importantly, hematopoiesis remained polyclonal throughout the course of the study. Extrahematopoietic toxicity was minimal, and no signs of myelodysplasia or leukemia were detected. These large-animal data support the evaluation of MGMT(P140K) in conjunction with O6BG and temozolomide in clinical trials.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 291-291
    Abstract: In vivo selection strategies of genetically modified cells carrying mutant forms of MGMT (i.e. P140K or G156A) have the potential to improve autologous and allogeneic stem cell gene therapy and transplantation. Previously, we have shown efficient in vivo selection and marrow protection in a clinically relevant canine model. Here we describe molecular analysis of stem cell pools before, during, and after aggressive chemotherapy with O6BG and BCNU or temozolomide. LAM-PCR was carried out to identify clones and track those clones over time. This study includes four dogs that received chemotherapy; two dogs received DLA-identical allogeneic transplants (G154/G069) and two dogs received autologous transplants (G197/G179). A control dog received an autologous transplant, but never received chemotherapy (G038) was included. Chemotherapy treated animals received CD34-enriched marrow cells transduced with an RD114-pseudotype retroviral vector encoding P140K and eGFP while the control dog retroviral vector encoded only eGFP. After stable engraftment four dogs were treated with either O6BG and BCNU or temozolomide. Initially, granulocyte marking levels ranged from 10–16% before the dogs received repeated dose-escalating regimens of chemotherapy. After the final round of chemotherapy granulocyte marking was & gt;98% and stabilized at 66–97% with stable increases in all cell lineages analyzed. For LAM-PCR analysis DNA was extracted from peripheral blood leukocytes before chemotherapy (71–95 days post-transplant designated PRE), after 4–6 treatments with chemotherapy (262–354 days post-transplant designated EARLY), and after the last treatment with chemotherapy (476–635 days post-transplant designated LATE). The DNA samples analyzed for G038 corresponded chronologically with that of the treatment animals with samples taken 95, 235, and 601 days post-transplant. Retroviral integration site analysis has shown that the four chemotherapy treated dogs and control dog are polyclonal at all times with no trend towards oligoclonal or monoclonal states. The stem cell pools of G038 are very similar with ~26% of clones identified in every pool after random sampling on bulk DNA. Additionally, overlapping sequences account for ~11% of PRE/EARLY clones, ~16% EARLY/LATE clones, and ~16% PRE/LATE clones. Unique sequences in each group account for about half of the clones analyzed. Conversely, in the dogs treated with chemotherapy, in over 40 clones analyzed no overlap between sequences has been identified. To further characterize the contribution of unique clones specific primers were designed to clones attained from integration sites collected in FACS-sorted populations from G197. When additional FACS-sorted and bulk peripheral blood samples from PRE/EARLY/LATE were probed the specific clone could be identified. This suggests that although the stem cell pool is polyclonal at all time points the clonal contribution of the pool is markedly different. This also suggests that the initial stem cell pool is composed of 100s to 1000s of clones. Retroviral copy number and telomere length of marked cells that have been selected by repeated treatments with chemotherapy is currently ongoing. Our studies suggest that even after aggressive in vivo selection of chemoprotected cells hematopoiesis has remained polyclonal and no side effects or malignancies were observed.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecular Therapy, Elsevier BV, Vol. 13 ( 2006), p. S285-
    Type of Medium: Online Resource
    ISSN: 1525-0016
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2006
    detail.hit.zdb_id: 2001818-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2007
    In:  The Journal of Gene Medicine Vol. 9, No. 5 ( 2007-05), p. 357-361
    In: The Journal of Gene Medicine, Wiley, Vol. 9, No. 5 ( 2007-05), p. 357-361
    Abstract: Gammaretroviral vectors require cell division for efficient transduction. Thus, extended cell culture times are necessary for efficient transduction with gammaretroviral vectors, which in turn can lead to stem cell loss and impaired engraftment. Lentiviral vectors transduce nondividing cells and are therefore able to transduce stem cells in short transduction protocols. Here, we compared the short‐term engraftment of lentivirally and gammaretrovirally transduced canine allogeneic DLA‐matched littermate cells. A reduced conditioning regimen of 400 cGy total body irradiation was used in preparation for clinical studies. Two dogs received a graft of gammaretrovirally transduced CD34‐selected cells. CD34 + cells were prestimulated for 30 h and then exposed twice to concentrated RD114 pseudotype vector. Three dogs received lentivirally transduced CD34‐selected cells. Cells were transduced overnight with concentrated VSV‐G pseudotype lentiviral vector. The animals in the lentiviral group showed a significantly faster granulocyte recovery. VNTR analysis 40–50 days after transplantation revealed higher donor chimerism for the lentiviral group compared to the retroviral group. These data suggest that short lentiviral transduction protocols may be superior to extended gammaretroviral transduction protocols with respect to engraftment potential of transduced CD34 + hematopoietic repopulating cells. Copyright © 2007 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 1099-498X , 1521-2254
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2007
    detail.hit.zdb_id: 2002203-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 1293-1293
    Abstract: In vivo selection strategies that convey a survival advantage to genetically modified cells carrying mutant forms of MGMT (P140K) have the potential to improve autologous and allogeneic stem cell gene therapy and transplantation. Previously, we have shown efficient in vivo selection and marrow protection in a clinically relevant canine model. Here we describe retrovirus integration site (RIS) mapping in the canine genome after chemotherapy with O6BG and BCNU or temozolomide (TMZ). This study includes 4 dogs that received chemotherapy (2 allogeneic and 2 autologous transplants) and an untreated control dog. Animals received CD34-enriched marrow cells transduced with an RD114-pseudotype retroviral vector expressing a bicistronic message containing P140K and GFP while the control dog retroviral vector encoded only GFP. After stable engraftment 4 dogs were treated with O6BG and either BCNU or TMZ. Initial granulocyte marking (10–16%) was increased to & gt;98% with dose-escalating chemotherapy and stabilized at 66–97% with stable increases in all cell lineages analyzed. For LAM-PCR DNA was extracted from peripheral blood leukocytes after various rounds of chemotherapy. The DNA samples analyzed for the control animal corresponded chronologically with that of the chemotherapy treatment animals. Criteria for a ‘true’ RIS are a BLAT (http://genome.ucsc.edu/) score of 35 or greater, & gt;90% identity to the canine genome (actual identity & gt;99%) and the second ranked score & lt;98% of the first score. To map the RIS relative to genes in the canine genome we utilized alignment of human RefSeq genes to the canine genome (UCSC BLAT: xenoRefFlat). It has been previously described that gammaretrovirus integrate preferentially around promoter and enhancer regions and that is recapitulated in our data. Analysis of a quadrant & lt;5kb around transcription start sites contains 13.3% and 25.5% of the total RIS sites analyzed for the chemotherapy and control animals respectively and when the quadrant is increased to (+/−)50kb that respectively comprises 60.0% and 75.0% of the RIS. We cataloged oncogenes & lt;50kb from RIS to determine if chemotherapy has selected for potentially pre-malignant clones. Interestingly, this does not seem to be the case and in fact the only oncogene identified & lt;50kb from a RIS in a chemotherapy animal (LASP1) was only isolated from a small subset of samples before chemotherapy was administered. In the control animal we identified three oncogenes (TAL1, LYL1 and TFG) within 50kb of a RIS. This suggests that chemotherapy has not selected for clones in or near oncogenes beyond that which already occur for gammaretroviruses. Initial RIS analysis of CFUs has shown that the average copy number is 1.52 and 1.46 for chemotherapy and control animals respectively, suggesting multiple integration events are not required for chemo-protection. We are in the process of carrying out a more thorough analysis of RIS before and after chemotherapy and will track the contribution to hematopoiesis of specific clones using real time-PCR. Our studies suggest that after aggressive in vivo selection of chemo-protected cells multiple clones contribute to hematopoiesis and no side effects or malignancies were observed. These studies and future studies in the nonmyeloablative setting are required to assess the long-term safety of chemo-protective gene therapy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 103, No. 10 ( 2004-05-15), p. 3710-3716
    Abstract: The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34+ hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)– and granulocyte-colony stimulating factor (G-CSF)–primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Clinical Investigation, American Society for Clinical Investigation, Vol. 112, No. 10 ( 2003-11-15), p. 1581-1588
    Type of Medium: Online Resource
    ISSN: 0021-9738
    Language: English
    Publisher: American Society for Clinical Investigation
    Publication Date: 2003
    detail.hit.zdb_id: 2018375-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...