GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pauluis, Olivier  (2)
  • 2020-2024  (2)
Material
Person/Organisation
Language
Years
  • 2020-2024  (2)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of the Atmospheric Sciences Vol. 80, No. 6 ( 2023-06), p. 1481-1498
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 80, No. 6 ( 2023-06), p. 1481-1498
    Abstract: Much of our conceptual understanding of midlatitude atmospheric motion comes from two-layer quasigeostrophic (QG) models. Traditionally, these QG models do not include moisture, which accounts for an estimated 30%–60% of the available energy of the atmosphere. The atmospheric moisture content is expected to increase under global warming, and therefore, a theory for how moisture modifies atmospheric dynamics is crucial. We use a two-layer moist QG model with convective adjustment as a basis for analyzing how latent heat release and large-scale moisture gradients impact the scalings of a midlatitude system at the synoptic scale. In this model, the degree of saturation can be tuned independently of other moist parameters by enforcing a high rate of evaporation from the surface. This allows for study of the effects of latent heat release at saturation, without the intrinsic nonlinearity of precipitation. At saturation, this system is equivalent to the dry QG model under a rescaling of both length and time. This predicts that the most unstable mode shifts to smaller scales, the growth rates increase, and the inverse cascade extends to larger scales. We verify these results numerically and use them to verify a framework for the complete energetics of a moist system. We examine the spectral features of the energy transfer terms. This analysis shows that precipitation generates energy at small scales, while dry dynamics drive a significant broadening to larger scales. Cascades of energy are still observed in all terms, albeit without a clearly defined inertial range. Significance Statement The effect of moist processes, especially the impact of latent heating associated with condensation, on the size and strength of midlatitude storms is not well understood. Such insight is particularly needed in the context of global warming, as we expect moisture to play a more important role in a warmer world. In this study, we provide intuition into how including condensation can result in midlatitude storms that grow faster and have features on both larger and smaller scales than their dry counterparts. We provide a framework for quantifying these changes and verify it for the special case where it is raining everywhere. These findings can be extended to the more realistic situation where it is only raining locally.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2023
    In:  Journal of Geophysical Research: Atmospheres Vol. 128, No. 4 ( 2023-02-27)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 128, No. 4 ( 2023-02-27)
    Abstract: The isentropic formulation of the leaky pipe stratospheric transport model (Linz et al., 2021, https://doi.org/10.1029/2021JD035199) is used to estimate midlatitude mixing fluxes A new metric, which quantifies the meridional range of air parcels being mixed across transport barriers, is proposed to estimate mixing The deep tropical stratosphere mixes with the extratropics in the upper stratosphere, but is otherwise remarkably isolated
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...