GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Paolini, Rossella  (1)
  • Natural Sciences  (1)
Material
Person/Organisation
Language
Years
Subjects(RVK)
RVK
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2001
    In:  Proceedings of the National Academy of Sciences Vol. 98, No. 17 ( 2001-08-14), p. 9611-9616
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 98, No. 17 ( 2001-08-14), p. 9611-9616
    Abstract: Syk and ZAP-70 nonreceptor protein tyrosine kinases (PTKs) are essential elements in several cascades coupling immune receptors to intracellular responses. The critical role of these kinases in promoting the propagation of intracellular signaling requires a tight regulation of their activity, thus the existence of a negative feedback loop regulating their expression can be hypothesized. Herein, we have investigated whether ubiquitin-dependent proteolysis could be a mechanism responsible for controlling the fate of Syk and ZAP-70 after their immunoreceptor-induced activation. We found that both Syk and ZAP-70 become ubiquitinated in response to aggregation of the low affinity Fc receptor for IgG (CD16) on human natural killer cells. We confirmed the identity of the major in vivo ubiquitinated kinase species by performing an in vitro ubiquitination assay. In addition, we found that after CD16 stimulation, ubiquitinated forms of Syk and ZAP-70 associate with the receptor complex. After CD16 engagement, we also observed a decrease in the stability of Syk and ZAP-70 PTKs that is counteracted by pretreatment with either proteasome or lysosomal inhibitors. Moreover, in the presence of the proteasome inhibitor, epoxomicin, we observed an accumulation of ubiquitinated forms of both kinases. Our findings provide evidence of ligand-induced ubiquitination of nonreceptor PTKs belonging to the Syk family and propose the ubiquitin-dependent proteasome-mediated degradation pathway as a mechanism for attenuating the propagation of intracellular signaling initiated by immune receptor engagement.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2001
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...