GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Plants, MDPI AG, Vol. 8, No. 9 ( 2019-09-04), p. 325-
    Abstract: Glyphosate is a cheap herbicide that has been used to control a wide range of weeds (4–6 times/year) in citrus groves of the Gulf of Mexico; however, its excessive use has selected for glyphosate-resistant weeds. We evaluated the efficacy and economic viability of 13 herbicide treatments (glyphosate combined with PRE- and/or POST-emergence herbicides and other alternative treatments), applied in tank-mixture or sequence, to control glyphosate-resistant weeds in two Persian lime groves (referred to as SM-I and SM-II) of the municipality of Acateno, Puebla, during two years (2014 and 2015). The SM-I and SM-II fields had 243 and 346 weeds/m2, respectively, composed mainly of Bidens pilosa and Leptochloa virgata. Echinochloa colona was also frequent in SM-II. The glyphosate alone treatments (1080, 1440, or 1800 g ae ha−1) presented control levels of the total weed population ranging from 64% to 85% at 15, 30, and 45 d after treatment (DAT) in both fields. Mixtures of glyphosate with grass herbicides such as fluazifop-p-butyl, sethoxydim, and clethodim efficiently controlled E. colona and L. virgata, but favored the regrowth of B. pilosa. The sequential applications of glyphosate + (bromacil + diuron) and glufosinate + oxyfluorfen controlled more than 85% the total weed community for more than 75 days. However, these treatments were between 360% and 390% more expensive (1.79 and 1.89 $/day ha−1 of satisfactory weed control, respectively), compared to the representative treatment (glyphosate 1080 g ae ha−1 = USD $29.0 ha−1). In practical and economic terms, glufosinate alone was the best treatment controlling glyphosate resistant weeds maintaining control levels 〉 80% for at least 60 DAT ($1.35/day ha−1). The rest of the treatments, applied in tank-mix or in sequence with glyphosate, had similar or lower control levels (~70%) than glyphosate at 1080 g ae ha−1. The adoption of glufosiante alone, glufosinate + oxyfluorfen or glyphosate + (bromacil + diuron) must consider the cost of satisfactory weed control per day, the period of weed control, as well as other factors associated with production costs to obtain an integrated weed management in the short and long term.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Agronomy, MDPI AG, Vol. 13, No. 5 ( 2023-04-28), p. 1273-
    Abstract: Weeds that usually grow in non-agricultural areas have become increasingly common invading perennial crops. Species of the genus Filago, in addition to invading Spanish olive groves, have developed certain levels of natural tolerance to the acetolactate synthase (ALS) inhibiting herbicide flazasulfuron. The objective of this study was to determine the level and the mechanism involved in the tolerance to flazasulfuron in Filago pyramidata L., which occurs in olive groves of southern Spain, as well as to identify possible cross- or multiple-tolerances by evaluating alternative herbicides for its control. A population resistant (R) to flazasulfuron and a susceptible (S) one of Conyza canadensis were used as references. The accessions of F. pyramidata presented LD50 values (from 72 to 81 g active ingredient (ai) ha−1) higher than the field dose of flazasulfuron (50 g ai ha−1), being 11–12.5 times more tolerant than the S population of C. canadensis, but less than half the R population (170 g ai ha−1). Enzymatically, F. pyramidata was as sensitive to flazasulfuron (I50 = 17.3 μM) as the S population of C. canadensis. Filago pyramidata plants treated with flazasulfuron, combined with 4-chloro-7-nitro-2,1,3-benzoxadiazole, had a growth reduction of up to 85%, revealing the participation of glutathione-S-transferases in herbicide metabolism. Filago pyramidata presented cross-tolerance to the different chemical groups of ALS inhibitors, except triazolinones (florasulam). Synthetic auxins (2,4-D and fluroxypyr) presented good control, but some individuals survived (low multiple resistance). Cellulose synthesis, 5-enolpyruvylshikimate-3-phosphate, 4-hydroxyphenylpyruvate dioxygenase, protoporphyrinogen oxidase, photosystem I, and photosystem II inhibitor herbicides, applied in PRE or POST-emergence, presented excellent levels of control of F. pyramidata. These results confirmed the natural tolerance of F. pyramidata to flazasulfuron and cross-tolerance to most ALS-inhibiting herbicides. The mechanism involved was enhanced metabolism mediated by glutathione-S-transferases, which also conferred low multiple tolerance to synthetic auxins. Even so, herbicides with other mechanisms of action still offer excellent levels of control of F. pyramidata.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Plants, MDPI AG, Vol. 9, No. 3 ( 2020-03-01), p. 297-
    Abstract: Glyphosate retention, absorption and translocation with and without adjuvant were examined in Lolium rigidum and Conyza canadensis in greenhouse and laboratory settings to develop an understanding of the influence of the selected adjuvant on glyphosate activity. Tests on whole plants show that the dose of herbicide needed to reduce dry weight by 50% (GR50) or plant survival (LD50) decreases by mixing glyphosate and adjuvant to 22%–24% and 42%–44% for both populations of L. rigidum and C. canadensis, respectively. This improvement in efficacy could be attributed to the higher herbicide retention and lower contact angle of the glyphosate + adjuvant drops on the leaf surface compared to the glyphosate solution alone. Plants of both species treated with 14C-glyphosate + adjuvant absorbed more glyphosate compared to non-adjuvant addition. Furthermore, the movement of the herbicide through the plant was faster and greater with the adjuvant. Our results reveal that the use of adjuvants improves the effectiveness of glyphosate in two of the most important weeds in agricultural crops in Mediterranean countries.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Plants, MDPI AG, Vol. 10, No. 9 ( 2021-09-21), p. 1970-
    Abstract: Of the six-glyphosate resistant weed species reported in Mexico, five were found in citrus groves. Here, the glyphosate susceptibility level and resistance mechanisms were evaluated in saltmarsh aster (Aster squamatus), a weed that also occurs in Mexican citrus groves. The R population accumulated 4.5-fold less shikimic acid than S population. S plants hardly survived at 125 g ae ha−1 while most of the R plants that were treated with 1000 g ae ha−1, which suffered a strong growth arrest, showed a vigorous regrowth from the third week after treatment. Further, 5-enolpyruvylshikimate-3-phosphate basal and enzymatic activities did not diverge between populations, suggesting the absence of target-site resistance mechanisms. At 96 h after treatment, R plants absorbed ~18% less glyphosate and maintained 63% of the 14C-glyphsoate absorbed in the treated leaf in comparison to S plants. R plants metabolized twice as much (72%) glyphosate to amino methyl phosphonic acid and glyoxylate as the S plants. Three non-target mechanisms, reduced absorption and translocation and increased metabolism, confer glyphosate resistance saltmarsh aster. This is the first case of glyphosate resistance recorded for A. squamatus in the world.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Agricultural and Food Chemistry, American Chemical Society (ACS), Vol. 71, No. 11 ( 2023-03-22), p. 4477-4487
    Type of Medium: Online Resource
    ISSN: 0021-8561 , 1520-5118
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2023
    detail.hit.zdb_id: 1483109-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Plants, MDPI AG, Vol. 12, No. 11 ( 2023-05-26), p. 2119-
    Abstract: Herbicide-resistant weeds have been identified and recorded on every continent where croplands are available. Despite the diversity of weed communities, it is of interest how selection has led to the same consequences in distant regions. Brassica rapa is a widespread naturalized weed that is found throughout temperate North and South America, and it is a frequent weed among winter cereal crops in Argentina and in Mexico. Broadleaf weed control is based on glyphosate that is used prior to sowing and sulfonylureas or mimic auxin herbicides that are used once the weeds have already emerged. This study was aimed at determining whether a convergent phenotypic adaptation to multiple herbicides had occurred in B. rapa populations from Mexico and Argentina by comparing the herbicide sensitivity to inhibitors of the acetolactate synthase (ALS), 5-enolpyruvylshikimate-3-phosphate (EPSPS), and auxin mimics. Five B. rapa populations were analyzed from seeds collected in wheat fields in Argentina (Ar1 and Ar2) and barley fields in Mexico (Mx1, Mx2 and MxS). Mx1, Mx2, and Ar1 populations presented multiple resistance to ALS- and EPSPS-inhibitors and to auxin mimics (2,4-D, MCPA, and fluroxypyr), while the Ar2 population showed resistance only to ALS-inhibitors and glyphosate. Resistance factors ranged from 947 to 4069 for tribenuron-methyl, from 1.5 to 9.4 for 2,4-D, and from 2.7 to 42 for glyphosate. These were consistent with ALS activity, ethylene production, and shikimate accumulation analyses in response to tribenuron-methyl, 2,4-D, and glyphosate, respectively. These results fully support the evolution of the multiple- and cross-herbicide resistance to glyphosate, ALS-inhibitors, and auxinic herbicides in B. rapa populations from Mexico and Argentina.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Plants, MDPI AG, Vol. 12, No. 18 ( 2023-09-20), p. 3315-
    Abstract: The characterization of the mechanisms conferring resistance to herbicides in weeds is essential for developing effective management programs. This study was focused on characterizing the resistance level and the main mechanisms that confer resistance to glyphosate in a resistant (R) Steinchisma laxum population collected in a Colombian rice field in 2020. The R population exhibited 11.2 times higher resistance compared to a susceptible (S) population. Non-target site resistance (NTSR) mechanisms that reduced absorption and impaired translocation and glyphosate metabolism were not involved in the resistance to glyphosate in the R population. Evaluating the target site resistance mechanisms by means of enzymatic activity assays and EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene sequencing, the mutation Pro106Ser was found in R plants of S. laxum. These findings are crucial for managing the spread of S. laxum resistance in Colombia. To effectively control S. laxum in the future, it is imperative that farmers use herbicides with different mechanisms of action in addition to glyphosate and adopt Integrate Management Programs to control weeds in rice fields of the central valleys of Colombia.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Agronomy, MDPI AG, Vol. 10, No. 3 ( 2020-03-09), p. 377-
    Abstract: Chloris distichophylla, suspected of glyphosate resistance (GR), was collected from areas of soybean cultivation in Rio Grande do Sul, Brazil. A comparison was made with a susceptible population (GS) to evaluate the resistance level, mechanisms involved, and control alternatives. Glyphosate doses required to reduce the dry weight (GR50) or cause a mortality rate of 50% (LD50) were around 5.1–3 times greater in the GR population than in the GS population. The shikimic acid accumulation was around 6.2-fold greater in GS plants than in GR plants. No metabolized glyphosate was found in either GR or GS plants. Both populations did not differ in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) basal activity or in vitro inhibition of EPSPS activity by glyphosate (I50). The maximum glyphosate absorption was observed at 96 hours after treatment (HAT), which was twofold higher in the GS plants than in the GR plants. This confirms the first case of glyphosate resistance in C. distichophylla. In addition, at 96 HAT, the GS plants translocated more 14C-glyphosate than the GR ones. The best options for the chemical control of both C. distichophylla populations were clethodim, quizalofop, paraquat, glufosinate, tembotrione, diuron, and atrazine. The first case of glyphosate resistance in C. distichophylla was due to impaired uptake and translocation. Chemical control using multiple herbicides with different modes of action (MOA) could be a tool used for integrated weed management (IWM) programs.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Agronomy, MDPI AG, Vol. 13, No. 7 ( 2023-06-22), p. 1682-
    Abstract: A study was carried out to determine the ALS (acetolactate synthase)-inhibitor herbicide resistance in the Mexican grass Ixophorus unisetus, a troublesome weed in corn crops in Mexico. First, the resistance was confirmed in field screening assays. Eight populations that survived nicosulfuron treatment at a field rate of 40 g ai ha−1 were labeled as putative-resistant. Dose–response trials demonstrated a high resistance in the eight populations (GR50 from 140.33 to 245.46 g ai ha−1). The synergism of malathion plus nicosulfuron demonstrated that the non-target-site resistance (NTSR) mechanism based on cytochrome P450 (Cyt-P450) was involved in five populations of I. unisetus. Molecular studies revealed that a single-nucleotide change occurs in the amino acid at position 376 (from GAT to GAG), which codifies from Asp-376 to Glu-376. This is the first time that Asp-376-Glu has been reported in this species. Assays in vitro and in vivo demonstrated I. unisetus cross-resistance to flucarbazone, penoxsulam, bispyribac-Na, and imazamox. No multiple resistance was found in two resistant populations exposed to different herbicides. Our results indicate that the lack of good control over Mexican grass in corn with ALS inhibitors is due to target-site mutation and NTSR mechanisms (Cyt-P450-mediated metabolism). A strategy should be established in Mexican fields to continue controlling this weed, including mechanical control practices and a good combination of the available pre- and post-emergence herbicides.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Agricultural and Food Chemistry, American Chemical Society (ACS), Vol. 69, No. 49 ( 2021-12-15), p. 14792-14801
    Type of Medium: Online Resource
    ISSN: 0021-8561 , 1520-5118
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2021
    detail.hit.zdb_id: 1483109-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...