GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 35, No. 18 ( 2022-09-15), p. 6075-6100
    Abstract: Previous work identified an anthropogenic fingerprint pattern in T AC ( x , t ), the amplitude of the seasonal cycle of mid- to upper-tropospheric temperature (TMT), but did not explicitly consider whether fingerprint identification in satellite T AC ( x , t ) data could have been influenced by real-world multidecadal internal variability (MIV). We address this question here using large ensembles (LEs) performed with five climate models. LEs provide many different sequences of internal variability noise superimposed on an underlying forced signal. Despite differences in historical external forcings, climate sensitivity, and MIV properties of the five models, their T AC ( x , t ) fingerprints are similar and statistically identifiable in 239 of the 240 LE realizations of historical climate change. Comparing simulated and observed variability spectra reveals that consistent fingerprint identification is unlikely to be biased by model underestimates of observed MIV. Even in the presence of large (factor of 3–4) intermodel and inter-realization differences in the amplitude of MIV, the anthropogenic fingerprints of seasonal cycle changes are robustly identifiable in models and satellite data. This is primarily due to the fact that the distinctive, global-scale fingerprint patterns are spatially dissimilar to the smaller-scale patterns of internal T AC ( x , t ) variability associated with the Atlantic multidecadal oscillation and El Niño–Southern Oscillation. The robustness of the seasonal cycle detection and attribution results shown here, taken together with the evidence from idealized aquaplanet simulations, suggest that basic physical processes are dictating a common pattern of forced T AC ( x , t ) changes in observations and in the five LEs. The key processes involved include GHG-induced expansion of the tropics, lapse-rate changes, land surface drying, and sea ice decrease.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 361, No. 6399 ( 2018-07-20)
    Abstract: We provide scientific evidence that a human-caused signal in the seasonal cycle of tropospheric temperature has emerged from the background noise of natural variability. Satellite data and the anthropogenic “fingerprint” predicted by climate models show common large-scale changes in geographical patterns of seasonal cycle amplitude. These common features include increases in amplitude at mid-latitudes in both hemispheres, amplitude decreases at high latitudes in the Southern Hemisphere, and small changes in the tropics. Simple physical mechanisms explain these features. The model fingerprint of seasonal cycle changes is identifiable with high statistical confidence in five out of six satellite temperature datasets. Our results suggest that attribution studies with the changing seasonal cycle provide powerful evidence for a significant human effect on Earth’s climate.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 40 ( 2019-10), p. 19821-19827
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 40 ( 2019-10), p. 19821-19827
    Abstract: Large initial condition ensembles of a climate model simulation provide many different realizations of internal variability noise superimposed on an externally forced signal. They have been used to estimate signal emergence time at individual grid points, but are rarely employed to identify global fingerprints of human influence. Here we analyze 50- and 40-member ensembles performed with 2 climate models; each was run with combined human and natural forcings. We apply a pattern-based method to determine signal detection time t d in individual ensemble members. Distributions of t d are characterized by the median t d { m } and range t d { r } , computed for tropospheric and stratospheric temperatures over 1979 to 2018. Lower stratospheric cooling—primarily caused by ozone depletion—yields t d { m } values between 1994 and 1996, depending on model ensemble, domain (global or hemispheric), and type of noise data. For greenhouse-gas–driven tropospheric warming, larger noise and slower recovery from the 1991 Pinatubo eruption lead to later signal detection (between 1997 and 2003). The stochastic uncertainty t d { r } is greater for tropospheric warming (8 to 15 y) than for stratospheric cooling (1 to 3 y). In the ensemble generated by a high climate sensitivity model with low anthropogenic aerosol forcing, simulated tropospheric warming is larger than observed; detection times for tropospheric warming signals in satellite data are within t d { r } ranges in 60% of all cases. The corresponding number is 88% for the second ensemble, which was produced by a model with even higher climate sensitivity but with large aerosol-induced cooling. Whether the latter result is physically plausible will require concerted efforts to reduce significant uncertainties in aerosol forcing.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 1 ( 2017-01), p. 373-392
    Abstract: Updated and improved satellite retrievals of the temperature of the mid-to-upper troposphere (TMT) are used to address key questions about the size and significance of TMT trends, agreement with model-derived TMT values, and whether models and satellite data show similar vertical profiles of warming. A recent study claimed that TMT trends over 1979 and 2015 are 3 times larger in climate models than in satellite data but did not correct for the contribution TMT trends receive from stratospheric cooling. Here, it is shown that the average ratio of modeled and observed TMT trends is sensitive to both satellite data uncertainties and model–data differences in stratospheric cooling. When the impact of lower-stratospheric cooling on TMT is accounted for, and when the most recent versions of satellite datasets are used, the previously claimed ratio of three between simulated and observed near-global TMT trends is reduced to approximately 1.7. Next, the validity of the statement that satellite data show no significant tropospheric warming over the last 18 years is assessed. This claim is not supported by the current analysis: in five out of six corrected satellite TMT records, significant global-scale tropospheric warming has occurred within the last 18 years. Finally, long-standing concerns are examined regarding discrepancies in modeled and observed vertical profiles of warming in the tropical atmosphere. It is shown that amplification of tropical warming between the lower and mid-to-upper troposphere is now in close agreement in the average of 37 climate models and in one updated satellite record.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...