GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Olsen, S. M.  (2)
Material
Publisher
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2010
    In:  Ocean Science Vol. 6, No. 4 ( 2010-12-13), p. 1013-1026
    In: Ocean Science, Copernicus GmbH, Vol. 6, No. 4 ( 2010-12-13), p. 1013-1026
    Abstract: Abstract. The flow of Atlantic water across the Greenland-Scotland Ridge (Atlantic inflow) is critical for conditions in the Nordic Seas and Arctic Ocean by importing heat and salt. Here, we present a decade-long series of measurements from the Iceland-Faroe inflow branch (IF-inflow), which carries almost half the total Atlantic inflow. The observations show no significant trend in volume transport of Atlantic water, but temperature and salinity increased during the observational period. On shorter time scales, the observations show considerable variations but no statistically significant seasonal variation is observed and even weekly averaged transport values were consistently uni-directional from the Atlantic into the Nordic Seas. Combining transport time-series with sea level height from satellite altimetry and wind stress reveals that the force driving the IF-inflow across the topographic barrier of the Ridge is mainly generated by a pressure gradient that is due to a continuously maintained low sea level in the Southern Nordic Seas. This implies that the relative stability of the IF-inflow derives from the processes that lower the sea level by generating outflow from the Nordic Seas, especially the thermohaline processes that generate overflow. The IF-inflow is an important component of the system coupling the Arctic region to the North Atlantic through the thermohaline circulation, which has been predicted to weaken in the 21st century. Our observations show no indication of weakening.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2010
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Ocean Science Vol. 12, No. 2 ( 2016-04-13), p. 545-560
    In: Ocean Science, Copernicus GmbH, Vol. 12, No. 2 ( 2016-04-13), p. 545-560
    Abstract: Abstract. The northern limb of the Atlantic thermohaline circulation and its transport of heat and salt towards the Arctic strongly modulate the climate of the Northern Hemisphere. The presence of warm surface waters prevents ice formation in parts of the Arctic Mediterranean, and ocean heat is directly available for sea-ice melt, while salt transport may be critical for the stability of the exchanges. Through these mechanisms, ocean heat and salt transports play a disproportionally strong role in the climate system, and realistic simulation is a requisite for reliable climate projections. Across the Greenland–Scotland Ridge (GSR) this occurs in three well-defined branches where anomalies in the warm and saline Atlantic inflow across the shallow Iceland–Faroe Ridge (IFR) have been shown to be particularly difficult to simulate in global ocean models. This branch (IF-inflow) carries about 40 % of the total ocean heat transport into the Arctic Mediterranean and is well constrained by observation during the last 2 decades but associated with significant inter-annual fluctuations. The inconsistency between model results and observational data is here explained by the inability of coarse-resolution models to simulate the overflow across the IFR (IF-overflow), which feeds back onto the simulated IF-inflow. In effect, this is reduced in the model to reflect only the net exchange across the IFR. Observational evidence is presented for a substantial and persistent IF-overflow and mechanisms that qualitatively control its intensity. Through this, we explain the main discrepancies between observed and simulated exchange. Our findings rebuild confidence in modelled net exchange across the IFR, but reveal that compensation of model deficiencies here through other exchange branches is not effective. This implies that simulated ocean heat transport to the Arctic is biased low by more than 10 % and associated with a reduced level of variability, while the quality of the simulated salt transport becomes critically dependent on the link between IF-inflow and IF-overflow. These features likely affect sensitivity and stability of climate models to climate change and limit the predictive skill.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...