GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 46, No. 2 ( 2014-2), p. 171-175
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 55, No. 5 ( 2023-05), p. 753-767
    Abstract: Mechanisms underpinning the dysfunctional immune response in severe acute respiratory syndrome coronavirus 2 infection are elusive. We analyzed single-cell transcriptomes and T and B cell receptors (BCR) of 〉 895,000 peripheral blood mononuclear cells from 73 coronavirus disease 2019 (COVID-19) patients and 75 healthy controls of Japanese ancestry with host genetic data. COVID-19 patients showed a low fraction of nonclassical monocytes (ncMono). We report downregulated cell transitions from classical monocytes to ncMono in COVID-19 with reduced CXCL10 expression in ncMono in severe disease. Cell–cell communication analysis inferred decreased cellular interactions involving ncMono in severe COVID-19. Clonal expansions of BCR were evident in the plasmablasts of patients. Putative disease genes identified by COVID-19 genome-wide association study showed cell type-specific expressions in monocytes and dendritic cells. A COVID-19-associated risk variant at the IFNAR2 locus (rs13050728) had context-specific and monocyte-specific expression quantitative trait loci effects. Our study highlights biological and host genetic involvement of innate immune cells in COVID-19 severity.
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 47, No. 11 ( 2015-11), p. 1304-1315
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The American Journal of Human Genetics, Elsevier BV, Vol. 103, No. 3 ( 2018-09), p. 440-447
    Type of Medium: Online Resource
    ISSN: 0002-9297
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 1473813-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 826-826
    Abstract: Introduction Splicing factor (SF) mutations represent a novel class of driver mutations highly prevalent in myelodysplastic syndromes (MDS), where four genes, including SF3B1, SRSF2, U2AF1, and ZRSR2, are most frequently affected. SF3B1 and SRSF2 mutations show prominent specificity to RARS/RCMD-RS and CMML subtypes, respectively. Although abnormal RNA splicing is thought to play a central role in the pathogenic mechanism of mutated SFs, little is known about exact gene targets, whose abnormal splicing is implicated in the pathogenesis of MDS or about the molecular mechanism that explains the unique subtype specificity of SF mutations, especially to those subtypes characterized by increased ring sideroblasts. Methods To address these issues, comprehensive analysis of abnormal RNA splicing was performed for a total of 336 MDS patients with different SF mutations. High-quality RNA was extracted from bone marrow mononuclear cells (BM/MNCs) and/or CD34+ cells and subjected to high-throughput sequencing, followed by exhaustive detection of splicing junctions for all relevant reads. Aberrant splicing events associated with different SF mutations were explored by comparing observed splicing junctions between samples with and without mutations. To specifically determine the role of SF3B1 mutations in ring sideroblast formation, CD34+ bone marrow cells from 13 patients with or without SF3B1 mutations were differentiated in vitro into erythroid cells. RNA sequencing was performed on cells recovered on day 7 and day 14 and differentially spliced genes in erythroid cells between SF3B1-mutated and unmutated samples were investigated. Results SF3B1, SRSF2, U2AF1, and ZRSR2 were mutated in 28%, 18%, 5%, and 7% of the patients, respectively. First, we compared SF3B1-mutated samples with those without known SF mutations. RNA sequencing of CD34+ cells revealed 230 splicing events significantly enriched in SF3B1-mutated cases, of which 90% (n = 206) were caused by misrecognition of 3' splice sites. A similar result was obtained in the experiment for BM/MNCs, where 177 (83%) out of 206 splicing events significantly enriched in SF3B1-mutated samples were caused by misrecognition of 3' splice sites. These observations were in accordance with the known function of SF3B1 in branch point recognition in the U2 snRNP complex. In both BM/MNCs and CD34+ cells, approximately 70% of the unusual 3' splice sites were located from 5 to 25 bases downstream from the authentic junctions. The bases immediately upstream to these 3' splice sites were more often pyrimidines, which was not accordance with the general rule: the bases next to 3' splice sites are purines, especially guanines. About 50% of these altered 3' splice sites resulted in frameshift, indicating that SF3B1 mutations cause deleterious effects in many genes simultaneously. Next, to explore the genes whose abnormal splicing is responsible for increased ring sideroblast formation, RNA sequencing was carried out for erythroid progenitor cells differentiated in vitro from CD34+ cells from MDS patients with or without SF3B1 mutations. We found that a total of 146 altered 3' splice sites were significantly associated with SF3B1 mutations, of which 87 were overlapped to the aberrant splice sites shown to be enriched in SF3B1 mutated primary MDS specimens. These splice sites were found in genes involved in heme biosynthesis, cell cycle progression, and DNA repair and their consequence was mostly deleterious due to aberrant frameshifts. Abnormal splicing events associated with other SF mutations were also identified. Among these, the most common abnormalities associated with mutated SRSF2 and U2AF1 were alternative exon usage. Misrecognition of 3' splice sites was also common in U2AF1-mutated cases. ZRSR2 mutations were associated with retentions of U12 introns, which is consistent with the known role of ZRSR2 as an essential component of the minor (U12-type) spliceosome. Conclusion SF mutations were associated with characteristic abnormal splicing changes in primary MDS samples as well as in vitro cultured cells. Our results provide insights into the pathogenic role of SF mutations in MDS. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 815-815
    Abstract: Angioimmunoblastic T-cell lymphoma (AITL) is a distinct subtype of peripheral T-cell lymphoma (PTCL) characterized by generalized lymphadenopathy, hyperglobulinemia, and autoimmune-like manifestations. Frequent mutations in TET2, IDH2, and DNMT3A have been described in AITL, which are commonly found in myeloid malignancies. However, the molecular pathogenesis specific to AITL is still unknown. Methods To clarify the molecular pathogenesis of AITL, we performed comprehensive gene-mutation analysis. Somatic mutations in 3 AITL and 3 PTCL-NOS specimens were explored using whole-exome sequencing (WES). Targeted resequencing for genes identified by WES was also performed in a cohort of 157 patients with AITL/PTCL-NOS. Results We identified a novel recurrent mutation in RHOA (c.G50T/p.G17V) in 3 AITL and one PTCL-NOS samples by WES. Validation in an extended cohort revealed an extremely high frequency of the identical G17V RHOA mutation in AITL (50/72 [69.4%]), together with mutations in TET2 (39/47 [83.0%] ), IDH2 (14/47 [29.8%]), and DNMT3A(12/47 [25.5%] ). The G17V RHOA mutation was also found in PTCL-NOS samples at a lower frequency (14/85 [16.5%]), especially in those harboring AITL features (PTCL-NOS with AITL features vs PTCL-NOS w/o AITL features: 13/21 [61.9%] vs 0/38 [0%]). Remarkably, mutations in RHOA, TET2, and IDH2 showed striking correlations. All RHOA-mutated samples were accompanied by TET2 mutations. IDH2 mutations were confined to the samples having simultaneous mutations of RHOA and TET2. Mutations in DNMT3A largely overlapped to TET2 mutations, but its correlation with RHOA or IDH2 mutations was much less clear. TET2 mutations showed a consistently higher allelic burden than RHOA mutations. Gene-mutation analysis of tumor cells and infiltrated cells demonstrated that the G17V RHOA mutation specifically existed in tumor cells, but not in non-tumor cells, while TET2 mutations were identified both in tumor and non-tumor cells. RHOA encodes a small GTPase, which operates as a molecular switch that regulates a wide variety of biological processes through cycling between an active (GTP-bound) and an inactive (GDP-bound) state. We demonstrated that the G17V RHOA mutant did not bind GTP and also inhibited GTP-binding of the wild-type RHOA protein. Accordingly, unlike wild-type RHOA, the G17V mutant was not able to activate transcription from the serum response factor-responsive element (SRF-RE). Conclusions Our data suggests that combination of preceding mutations in TET2 and subsequent tumor-specific G17V RHOA mutation determines distinct disease properties of AITL. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2800-2800
    Abstract: While in the past germline (GL) events have been investigated in myeloid disorders, these studies focused on targeted genotyping of empirically selected candidate genes, and a comprehensive characterization of GL-encoded susceptibility has not been undertaken in these diseases. Whole exome sequencing (WES) data sets obtained in the molecular discovery projects, allow for a targeted or unbiased analysis of inherited alterations to identify those with a pathogenic importance. To that end, initial WES studies, including published analyses from TCGA leukemia cohort, have focused mainly on somatic mutations. MDS is a disease of the elderly, typically presenting with complex phenotypes and clinical histories. Inherited predisposition, if present, would be expected to follow complex, non-mendelian genetic traits, have low penetrance and interact with various extrinsic factors such as exposures or coexisting conditions, and family histories may not be informative. Therefore, in this disorder predisposing GL alterations may be difficult to discern. Here, we have applied WES in patients with MDS and other myeloid neoplasms (N=117). We also investigated AML data set available through TCGA (N=201). In addition to defining somatic mutations in paired (tumor, GL DNA), we also performed an unbiased search for GL SNPs and mutations. Our strategy was comprehensive; firstly it focused on selection of non-synonymous and, possibly deleterious SNPs. Subsequently, putative candidates were further prioritized based on their genotypic frequency in the general population, and finally, according to perceived importance for the leukemogenesis. For the purpose of this study, we used a maximum minor allele frequency threshold of .05 in matched general population for alterations to be prioritized. As a result, we identified a large variety of new and, as expected, previously reported GL polymorphisms and mutations. Known pathogenic as well as novel GL alterations (42 non-synonymous sites, reported (N=33) and novel (N=9)) were found in telomerase genes (TERT, DKC1, GAR1, POT1, SMG6, NOP10, TINF2, NHP2, WRAP53) and other bone marrow failure genes (ELANE, GFI1, HAX1, GATA2, CSF3R, WAS) or many others. Subsequently, we hypothesized that there may also be GL variants of pathogenic significance in genes that are also frequently affected by somatic events. Known examples of such genes include SETBP1, NF1, CBL and many others. Such GL events may be directly disease-prone or indirectly predispose to somatic lesions within the same gene (as recently shown for JAK2 V617F mutation). Since the complexity of the entire analysis exceeds the boundaries of this abstract we focus here on exemplary results of genes most frequently affected by somatic mutations, including e.g., TET2 (8%), ASXL1 (15%), DNMT3A (26%), CEBPA (6%), TP53 (8%) and others. In this illustrative subset alone, 647 non-synonymous variants across 74 sites, in 14/16 genes of interest were found (FLT3, TET2 and TP53 were most frequently affected). Following, bio-analytic filtering we identified 30 rare variants, of which 11/30 were present at a significantly higher frequency compared to control population. Of these, 5/11 were located within such gene as ASXL1: S737N (p=.002), P1213R (p=.005), G543S (p=.023), L1286V (p=.026), L1216F (p=.036), 3/11 in FLT3: D324N (p 〈 .001), A912V (p=.002) ,F298L (p=.003), the remaining were in DNMT3A: R693H (p=.042), KIT: N293S (p=.019), and KRAS: C180X (p=.002). Of note is the FLT3 polymorphism, D324N, which has been previously linked to AML susceptibility. Excluding reported polymorphic sites, 33% of non-synonymous sites were not reported in population databases. Our data identified several GL variants that appear to associate with specific phenotypic features. For instance, a significantly decreased overall survival was seen in patients who had a RUNX1/RUNX1-IT (p=.03) GL mutation. Furthermore, patients diagnosed with MDS/MPN were found to have a greater odds of presenting with concurrent GL and somatic variants in TET2 gene compared to non-MDS/MPN patients [OR 7.4; 95% CI 2.5-21.8). In conclusion, our data suggests that both GL and somatic events in myeloid disorders are important for the pathogenesis of myeloid malignancies. They may interact with each other and with cytogenetic abnormalities, which can lead to deletion of protective alleles or amplification of disease-prone alleles. Disclosures: Makishima: AA & MDS international foundation: Research Funding; Scott Hamilton CARES grant: Research Funding. Maciejewski:NIH: Research Funding; Aplastic anemia & MDS International Foundation: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 75-75
    Abstract: Adult T-cell leukemia/lymphoma (ATL) is a distinct form of peripheral T-cell lymphoma, which is etiologically associated with human T-cell leukemia virus type 1 (HTLV-1) infection during early infancy. Although HTLV-1 can effectively immortalize human T cells, there is a long latency period of ~50 years before the onset of ATL, suggesting that HTLV-1 infection alone may be insufficient for the development of ATL, but additional acquired genetic events that accumulate during the later life are essential for the development of ATL. However, such somatic alterations underlying the pathogenesis of ATL have not been fully elucidated. To obtain a complete registry of genetic alterations in ATL, we performed an integrated genetic study, in which whole-genome/exome and RNA sequencing (RNA-seq) was performed together with array-based methylation and genomic copy number analysis among a cohort of 50 paired ATL samples, followed by extensive validation using targeted deep sequencing of detected mutations in 〉 400 follow-up samples. Compared with other lymphoid malignancies, ATL cells carried higher numbers of mutations, copy number alterations, and rearrangements than in other lymphoid malignancies, suggesting the presence of global genomic instability in ATL. In addition to previously reported mutational targets in ATL (TP53,TCF8, and FAS) and known targets frequently mutated in other lymphoid malignancies (CARD11, GATA3, IRF4, POT1, and RHOA), we identified a variety of highly recurrent mutations affecting previously unknown mutational targets, many of which are involved in T-cell development, activation and migration, immunosurveillance, and transcriptional regulation. Molecular and functional analysis using human T-cell leukemia cell lines showed that some of these novel mutations actually augment T-cell receptor signaling, validating their biological significance in ATL. A comparison of mutations among disease subtypes revealed that several subtype-specific mutations, including TP53, CD58, IRF4 and TBL1XR1 mutations in acute and lymphoma types, and STAT3mutation in chronic and smoldering types, suggesting that different oncogenic mechanisms underlie different ATL subtypes. Furthermore, ATL cells had a distinct pattern of copy number changes and genomic rearrangements. Interestingly, their gene targets showed a significant overlap to mutational targets. Surprisingly, somatic focal deletions involving the 14q31.1 locus were observed in all the cases examined by whole-genome sequencing and therefore are thought to uniquely characterize ATL genomes, although their gene targets remained to be identified. Like other regions also frequently deleted in ATL, such as 7q31.1 and 1p21.3 loci, these deletions were thought to reflect high levels of genetic instability. Finally and conspicuously, pathway analysis revealed that multiple genes involved in the Tax interactome were systematically altered in ATL, although Tax itself underwent gene silencing in most cases. These data suggested that ATL cells can escape from cytotoxic T-lymphocytes by silencing immunogenic Tax expression, while developing alternative oncogenic mechanisms through acquiring somatic mutations or copy number alterations in the Tax-related pathway. Our findings suggest that deregulated T-cell functionalities caused by genetic alterations, especially those associated with HTLV-1 Tax oncoprotein, are central to ATL pathogenesis, and provide a novel clue to contrive new diagnostics and therapeutics for this intractable disease. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 1706-1706
    Abstract: Abstract 1706 The recent study of whole-exome sequencing on MDS has revealed frequent and specific pathway mutations involving multiple components of the RNA splicing machinery, including U2AF35, SRSF2, SF3B1 and ZRSR2. The mutually exclusive manner of these mutations among MDS cases also supported that deregulated RNA splicing contributes to the pathogenesis of MDS. Interestingly, the distribution of these splicing pathway mutations shows a substantial difference with regard to disease subtypes. Thus, the SF3B1 mutations are by far the most frequent in RARS and RCMD-RS cases, and the SRSF2 mutations are more prevalent in CMML. SRSF2 is a member of the SR protein family that is commonly characterized by one or two RNA recognition motifs (RRM) and a signature serine/arginine-rich domains (RS domains). The SR proteins interact with other spliceosome components through their RS domains, among which most extensively characterized are SRSF1 (ASF/SF2) and SRSF2 (SC35). Both SR proteins bind a splicing enhancer site within the 3' target exon and also interact with the U2AF, playing an indispensable role in both constitutive and alternative splicing in most cell types. In fact, the knockout of these genes in mice results in embryonic lethality. There is emerging evidence that establishes a connection between the abnormal expression of SR proteins and the development of cancer, mainly as a result of change in the alternative splicing patterns of key transcripts. Increased expression of SR proteins usually correlates with cancer progression, as shown by elevated expression of SR proteins in ovarian cancer and breast cancer. In spite of the similarity in their functions, both proteins are thought to have distinct roles, especially in the pathogenesis of myeloid malignancies, since we found no SRSF1 mutations among 582 cases with myeloid neoplasms. On the other hand, studies have shown that increased expression of SRSF1 transforms immortal rodent fibroblasts and leads to the formation of sarcomas in nude mice, supporting the notion that SRSF1 is a proto-oncogene, whereas SRSF2 does not have transforming activity, indicating a highly specific role of SRSF1 in this type of cancer. Thus, little is known about the biological mechanism by which the SRSF2 mutations are involved in the pathogenesis of MDS, although the mutations at the P95 site are predicted to cause a significant displacement of the RS domain relative to the domain for RNA binding. So to gain an insight into the functional aspect of SRSF2 mutations, we performed sequencing analysis of mRNAs extracted from mutant (P95H) SRSF2-transduced HeLa cells in which expression of the wild-type and mutant SRSF2 were induced by doxycycline. The abnormal splicing in mutant SRSF2-transduced cells was directly demonstrated by evaluating the read counts in different fractions. Next, to investigate functional role of SRSF2 mutant, HeLa cells were transduced with lentivirus constructs expressing either the P95H SRSF2 mutant or wild-type SRSF2, and cell proliferation was examined. After the induction of gene expression, the mutant SRSF2-transduced cells showed reduced cell proliferation. In addition, we transduced P95H SRSF2 constructs into factor-dependent 32D cell lines. The expression of mutant SRSF2 protein resulted in increased apoptosis in the presence of IL-3 and also suppression of cell growth in the presence of G-CSF, which may be related to ineffective hematopoiesis, a common feature of MDS. To further clarify the biological effect of SRSF2 mutants in vivo, a highly purified hematopoietic stem cell population (CD34-c-Kit+ScaI+ Lin-) prepared from C57BL/6 (B6)-Ly5.1 mouse bone marrow was retrovirally transduced with either the mutant or wild-type SRSF2 with EGFP marking. The transduced cells were mixed with whole bone marrow cells from B6-Ly5.1/5.2 F1 mice, transplanted into lethally irradiated B6-Ly5.2 recipients, and we are now monitoring the ability of these transduced cells to reconstitute the hematopoietic system and other hematological phenotypes. Much remains, however, to be unrevealed about the functional link between the abnormal splicing of RNA species and the phenotype of myelodysplasia. Further functional studies should be warranted to understand these mechanisms in detail. In this meeting, we will present the results of our functional studies on the SRSF2 mutations and discuss the pathogenesis of MDS in terms of the alterations of splicing machinery. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 127, No. 5 ( 2016-02-04), p. 596-604
    Abstract: RHOA mutations are common in ATLL and show a unique distribution compared with other T-cell lymphomas. Depending on patients, functionally distinct RHOA mutations are clonally selected and involved in the pathogenesis of ATLL.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...