GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (4)
  • Niederst, Matthew J.  (4)
Material
Publisher
  • American Association for Cancer Research (AACR)  (4)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 394-394
    Abstract: Approximately 10% of patients with colorectal cancer (CRC) harbor the BRAF V600E driver mutation. Unlike melanoma, the response rate of BRAF-mutant CRC to the combination of BRAF and MEK inhibitors is limited. In order to target the MAPK signaling pathway more effectively by blocking EGFR-mediated re-activation of the pathway, triple combination trials of BRAF, MEK and EGFR inhibitors are on-going, but the response is underwhelming. To find alternative combination strategies that could deepen therapeutic responses driven by a BRAFi and MEKi combination, we performed pooled shRNA screens under the treatment pressure of the dual combination of the BRAF inhibitor dabrafenib and MEK inhibitor trametinib. In some of the BRAF-mutant CRC models, we observed marked discrepancies in the therapeutic responses between in vitro and in vivo conditions. Therefore, shRNA screens were conducted in cancer cell lines grown both in vitro (i.e. 2D and 3D culture conditions) and in vivo in xenograft tumor models. The aim of the study was to identify novel targets to combine with BRAFi/MEKi, and to compare the results of the screens preformed in vitro and in vivo. The biggest technical challenge for an in vivo pooled screening approach is achieving adequate library representation after the bottleneck of cell implantation and engraftment in mice. Our in vivo screen had an additional bottleneck due to the dabrafenib/trametinib combination treatment. Therefore, by performing a pilot screen with the BRAF-mutant cell line model HT29 we aimed to address two questions: 1) whether the in vivo screen under treatment pressure would be technically feasible and 2) if novel combination partners to dabrafenib/trametinib would be identified to potentially improve efficacy beyond that observed with the triple combination with EGFR inhibitors. We were able to achieve comparable intra-group variability and repeatability between in vitro and in vivo conditions, whereby gene level analysis revealed several differential hits between the two conditions, which were both sensitizers and activators to the dabrafenib/trametinib combination treatment. We identified targets specific for the in vivo condition that had not been identified in vitro and vice versa. Thus, in vivo screening may identify powerful hits that would not be realized by in vitro investigations. With success of this pilot effort, the screen is currently being expanded into additional BRAF-mutant CRC models. Citation Format: Hyo-eun C. Bhang, Matthew T. DiMare, David P. Kodack, Lujian Tan, Grainne Kerr, Viveksagar Krishnamurthy Radhakrishna, Javad Golji, David A. Ruddy, Tina Yuan, Matthew J. Niederst, Joshua M. Korn, Diana Graus Porta, Peter S. Hammerman, Jeffrey A. Engelman, Tinya Abrams, Juliet Williams. In vivo shRNA screens under treatment pressure by BRAF and MEK inhibitors to identify novel combination treatment strategies for BRAF-mutant colorectal cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 394.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 18, No. 12_Supplement ( 2019-12-01), p. A122-A122
    Abstract: Patients with non-small cell lung cancer (NSCLC) that is driven by an activating mutation in the epidermal growth factor receptor (EGFR) are routinely treated with tyrosine kinase inhibitors (TKI) to specifically target the activated EGFR signaling pathway. EGFR-mutant NSCLC tumors initially respond well to EGFR inhibitors, however a subset of drug-tolerant persister cells remain at minimal residual disease (MRD) and represent a cell reservoir from which acquired genetic mutations, such as EGFRT790M or MET amplification, can emerge to render the tumor fully drug-resistant. Prior to the emergence of genetic mutations, little is known about how drug-tolerant persister cells are able to survive EGFR targeted therapy at MRD. To better understand this cell population, we investigated drug-tolerance using single cell cloning and scRNAseq in NSCLC cell lines. Using ClonTracer barcoding, we found that the same barcodes emerged after EGFR-inhibitor treatment across multiple replicates, indicating that drug-tolerance is both pre-defined and stable over many generations. Within each individual cell line, we observed multiple distinct heterogeneous subpopulations of drug-tolerant persister cells with unique gene expression signatures and proliferation rates. Additionally, we observed evidence of putative mechanisms of drug tolerance that were shared by persister cells across cells lines and used a drug combination treatment approach to target these distinct subpopulations of drug-tolerant persister cells. Taken together, our findings provide evidence that drug-tolerant persister cell subpopulations are both predefined and heterogeneous, as well as suggesting that drug-combination treatment approaches in the clinic would be more effective at targeting multiple persister cell survival mechanisms. Citation Format: Jennifer L. Cotton, Viveksagar KrishnamurthyRadhakrishna, Julie Chen, Michelle Piquet, Joel Wagner, Gaylor Boulay, Kathleen Sprouffske, Youngchul Song, Xiaoyan Li, Katja Schumacher, Raphael Thierry, Nathaniel D. Kirkpatrick, David A. Ruddy, Joshua Korn, Erick J. Morris, Peter S. Hammerman, Jeffrey A. Engelman, Matthew J. Niederst. Molecular barcoding and single cell approaches to investigate drug tolerance in EGFRmut NSCLC [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2019 Oct 26-30; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2019;18(12 Suppl):Abstract nr A122. doi:10.1158/1535-7163.TARG-19-A122
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 21_Supplement ( 2020-11-01), p. PO-100-PO-100
    Abstract: EGFR targeted kinase inhibitors (TKIs) are the standard of care in non-small cell lung cancer (NSCLC) patients with activating mutations in the epidermal growth factor receptor (EGFR). Patients initially respond well to EGFR inhibitors, although the majority only achieve a partial response and a subset of drug-tolerant persister cells remain at minimal residual disease (MRD). These drug-tolerant persister cells represent a cell reservoir from which de novo genetic mutations, such as EGFRT790M or MET amplification, can arise to render the tumor fully drug-resistant. Previous studies suggest that drug-tolerant cells rely on an altered chromatin state to survive EGFR-inhibition. However, it is still unclear whether the drug-tolerant cell population emerges through selection for cells that pre-existed in that state or through and adaptation in response to drug. It is also unknown if drug-tolerant persister cells rely on a single survival mechanism that could be exploited to more effectively target this population or if multiple independent mechanisms are being utilized and need to be targeted to fully suppress drug tolerance. Despite the urgent clinical need to answer these questions, we have lacked the techniques capable of the dynamic resolution necessary to investigate the emergence of drug tolerance throughout the course of treatment within individual cell lineages. Here we present a strategy to investigate the clonal evolution of drug tolerance in EGFRmut NSCLC using an expressed molecular barcoding library coupled with single cell RNAseq (scRNAseq). We found that the cell lineages that are destined to become drug-tolerant are pre-defined, although the epigenetic drug-tolerant state does not pre-exist. We observed multiple distinct heterogeneous classes of drug-tolerant cells with unique gene expression signatures as well as distinct trajectories in response to EGFRi. We observed evidence of putative mechanisms of drug tolerance, such as EMT and adaptive MAPK signaling, in parallel trajectory classes across cell lines. Finally, we compared EGFRi/TKI drug combinations versus EGFRi/chemotherapy combinations to investigate which therapeutic approach was more efficacious in targeting multiple trajectory classes of drug tolerant cells. Taken together, our work presents a new technology that enables a comprehensive interrogation of drug response over time and provides greater insight into how drug-tolerant cells evolve over the course of drug treatment, which ultimately can help inform combination treatment strategies for patients in the clinic. Citation Format: Jennifer L. Cotton, Viveksagar Krisnamurthy Radhakrishna, Javier Estrada Diez, David A. Ruddy, Kathleen Sprouffske, Gaylor Boulay, Michelle Piquet, Joel Wagner, Youngchul Song, Xiaoyan Li, Katja Schumacher, Joshua Korn, Erick J. Morris, Peter S. Hammerman, Jeffrey A. Engelman, Matthew J. Niederst. Expressed molecular barcoding coupled with single cell RNAseq enables a high resolution investigation into the evolution of drug tolerance [abstract]. In: Proceedings of the AACR Virtual Special Conference on Tumor Heterogeneity: From Single Cells to Clinical Impact; 2020 Sep 17-18. Philadelphia (PA): AACR; Cancer Res 2020;80(21 Suppl):Abstract nr PO-100.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), ( 2023-08-21)
    Abstract: For a majority of non-small cell lung cancer (NSCLC) patients with EGFR mutations, treatment with EGFR inhibitors (EGFRi) induces a clinical response. Despite this initial reduction in tumor size, residual disease persists that leads to disease relapse. Elucidating the pre-existing biological differences between sensitive cells and surviving drug-tolerant persister cells and deciphering how drug-tolerant cells evolve in response to treatment could help identify strategies to improve the efficacy of EGFRi. In this study, we tracked the origins and clonal evolution of drug tolerant cells at a high resolution by using an expressed barcoding system coupled with single cell RNA-sequencing. This platform enabled longitudinally profiling of gene expression and drug sensitivity in response to EGFRi across a large number of clones. Drug tolerant cells had higher expression of key survival pathways such as YAP and EMT at baseline and could also differentially adapt their gene expression following EGFRi treatment compared to sensitive cells. In addition, drug combinations targeting common downstream components (MAPK) or orthogonal factors (chemotherapy) showed greater efficacy than EGFRi alone, which is likely attributable to broader targeting of the multiple EGFRi tolerance mechanisms present in tumors. Overall, this approach facilitates thorough examination of clonal evolution in response to therapy that could inform the development of improved diagnostic approaches and treatment strategies for targeting drug tolerant cells.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...