GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Trans Tech Publications, Ltd.  (39)
  • Nie, Zuo Ren  (39)
Material
Publisher
  • Trans Tech Publications, Ltd.  (39)
Language
  • 1
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2014
    In:  Advanced Materials Research Vol. 968 ( 2014-6), p. 7-11
    In: Advanced Materials Research, Trans Tech Publications, Ltd., Vol. 968 ( 2014-6), p. 7-11
    Abstract: The high strain rate deformation behavior of as-annealed and as-cold rolled pure titanium was inspected by Split Hopkinson Pressure Bar (SHPB). The effect of deformation structure on adiabatic shear behavior in pure titanium was analyzed from the aspect of dynamic mechanical response and microstructural evolution. It was found that the strong {0001} basal texture was formed in as-cold rolled pure titanium. There were Geometrically Necessary Boundaries (GNBs) with spacing of 0.6μm and Incidental Dislocation Boundaries (IDBs) with size of 80nm in one grain. The enhancement of adiabatic shear sensitivity in as-cold rolled titanium was attributed to the deformation induced dislocation boundaries. The core of adiabatic shear band (ASB) was full of fine equiaxed grains with average size of 0.4μm, which was induced by dynamic recrystallization.
    Type of Medium: Online Resource
    ISSN: 1662-8985
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2014
    detail.hit.zdb_id: 2265002-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2012
    In:  Materials Science Forum Vol. 706-709 ( 2012-1), p. 329-334
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 706-709 ( 2012-1), p. 329-334
    Abstract: Mechanical properties, corrosion resistance, and microstructure of Al alloys with trace element erbium were studied. Systemic studies in the pure aluminum and 5xxx series Al alloys showed that the tensile strength was significantly improved by above 20% with little loss of elongation by Er alloying. The 5xxx series Al alloys with erbium also exhibited excellent corrosion resistance. Erbium improved the aging hardness response of 7xxx series Al alloys and the addition of 0.4%Er to Al-Zn-Mg alloys increases the hardness by 35MPa. In all experiment Al alloys, a small addition of 0.1wt% Er induced a quick increase of the tensile strength and the amount of 0.4%Er shows optimized balance of the strength and ductility. The Er addition improved the thermal stability, with increasing the starting Rex temperature about 50°C in all investigated Al alloys. With regard to the microstructure mechanisms, in all experimental Al alloys Er addition has significantly refined the microstructure, which mainly attributed to presence the Al 3 Er particles. In the 7xxx series Al alloys, no observable PFZ after addition of 0.4% Er was found. The fatigue property, the fracture toughness and the thermal stability of microstructure and properties are on the way.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2012
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2013
    In:  Applied Mechanics and Materials Vol. 477-478 ( 2013-12), p. 1298-1302
    In: Applied Mechanics and Materials, Trans Tech Publications, Ltd., Vol. 477-478 ( 2013-12), p. 1298-1302
    Abstract: The dynamic mechanical property and microstructure evolution of commercial pure titanium with initial lamellar dislocation boundary structures were studied at different strain rate compression. The experiments were conducted to the cylindrical specimens using Gleeble-3500 thermal mechanical simulation machine at room temperature. With increasing of the strain rate, strain rate strengthening effect was found in the material. New dislocation boundary structures along impact direction were generated which perpendicular to initial dislocation boundary. Then the S bands boundary structure was formed by interaction between new and initial dislocations. It can be supposed that initial dislocation boundary are sheared and kinked by new dislocation slipping.
    Type of Medium: Online Resource
    ISSN: 1662-7482
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2013
    detail.hit.zdb_id: 2251882-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2014
    In:  Advanced Materials Research Vol. 915-916 ( 2014-4), p. 567-571
    In: Advanced Materials Research, Trans Tech Publications, Ltd., Vol. 915-916 ( 2014-4), p. 567-571
    Abstract: As a model material, commercial pure titanium was rolled to plates with different dislocation boundaries. The dynamic mechanical response of Ti specimen was analyzed during impacted with Split Hopkinson Pressure Bar (SHPB) at different strain rates, and microstructure evolution was investigated using optical microscopy and transmission electron microscopy. It was found that adiabatic shear sensitivity was decreased with increasing strain rates for all as-annealed, 25% and 50% cold rolled states. To the contrary, for 70% cold rolled state the adiabatic shear sensitivity was increased with increasing strain rates. The microstructure of adiabatic shear bands (ASBs) were developed from elongation morphology to fine equiaxed grains in the specimens of 25% cold rolled state, and ASBs became broader with increasing strain rate.
    Type of Medium: Online Resource
    ISSN: 1662-8985
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2014
    detail.hit.zdb_id: 2265002-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2014
    In:  Materials Science Forum Vol. 794-796 ( 2014-6), p. 704-709
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 794-796 ( 2014-6), p. 704-709
    Abstract: Our former experimental study showed that the addition of Er to Al-Zn-Mg alloys speeded up the aging precipitation, accelerated the precipitation of and enhanced the effect of aging strengthening distinctively. In this paper, the Monte Carlo method was applied to simulate the microstructural evolution of Al-2.6Zn-(2.3Mg)-(0.07Er), Al-2.6Zn-2.3Mg-(0.12Er), and Al-2.6Zn-2.3Mg-0.1(Er,Zr) alloys during aging. The effects of Er addition to Al-Zn-Mg alloys on the clustering of Zn and Mg atoms are studied through analysis of the simulation results and the effects on the subsequent aging process are discussed as well. The results show that the Zn/Mg/Er clusters appear beside the Zn clusters, Mg clusters and Zn/Mg clusters in the Er addition Al-Zn-Mg alloys. The Zn clusters and Zn/Mg clusters are finer in the Al-2.6Zn-2.3Mg-xEr alloys than that in the Al-2.6Zn-2.3Mg alloys without Er addition. The size of the Zn clusters and Zn/Mg clusters in the Al-2.6Zn-2.3Mg-0.07Er is eight percent and nineteen percent smaller than that in the Al-2.6Zn-2.3Mg alloys without Er addition respectively. This precipitation refinement effect of Er addition to the Al-2.6Zn-2.3Mg alloys is enhanced with the increment of Er content. These above results are consistent with the experimental results that the precipitation in the Al-Zn-Mg alloys with Er is finer and denser than that in the Al-Zn-Mg alloys without Er. The Er addition changes the clusters distribution in the Al-Zn-Mg alloys by its interaction with the main solute atoms and the vacancy, and thus influences the precipitations during subsequent aging processing.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2014
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2016
    In:  Materials Science Forum Vol. 879 ( 2016-11-15), p. 2050-2054
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 879 ( 2016-11-15), p. 2050-2054
    Abstract: In this paper, effects of initial micro-structures on deformation behaviors of commercial pure titanium were elaborated by investigating the evolution of dislocation boundary and its adiabatic shear sensitivity. At the low to medium stain rates, the main plastic deformation mechanism of as-annealed commercial pure titanium is dislocation slipping. Meanwhile, geometrically necessary boundaries (GNBs) with different directions are generated and crossed with each other. However, new dislocation boundaries are formed in as-cold rolled plates, which are parallel to the initial ones induced by cold rolling. When the strain rate is up to 1000 s -1 , the initial dislocation boundary playes an adverse role in the adiabatic shear sensitivity of commercial pure titanium. The adiabatic shear band is the high-speed deformation characteristic micro-structure in commercial pure titanium. In addition, dynamic recrystallized grains are generated in the center of an adiabatic shear band, which is consistent with the sub-grain rotation mechanism.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2016
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2020
    In:  Materials Science Forum Vol. 993 ( 2020-5), p. 294-298
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 993 ( 2020-5), p. 294-298
    Abstract: In this paper, an Al-Zn-Mg-Cu alloy with a small amount of Er and Zr added was used as the research object. The homogenization annealing was carried out, and the 7N01 aluminum alloy was used at 300 °C, 350 °C, 400 °C, 450 °C and 0.1 s -1 , 1 s -1 , 10 s -1 deformation conditions by Gleeble-3500 thermal simulator. Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Electron Backscatter Diffraction (EBSD) and Transmission Electron Microscopy (TEM) were used for microstructure analysis. The results show that the stress-strain curve of with Er 7N01 aluminum alloy can be divided into micro-strain stage, uniform deformation stage and steady-state flow stage during the thermal compression process. The flow stress of 7N01 aluminum alloy achieved peaks at the initial stage of strain, and then increased with the increase of strain rate and the decrease of deformation temperature. With the increase of deformation temperature and the decrease of deformation rate, the recrystallization process was significantly increased.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2020
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2014
    In:  Materials Science Forum Vol. 794-796 ( 2014-6), p. 1044-1049
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 794-796 ( 2014-6), p. 1044-1049
    Abstract: The high temperature strength of aluminum can be improved by forming thermal stable precipitates of microalloying elements such as Er, Sc and Zr. Our previous research indicates that composite addition of Er and Zr can improve the amount of precipitations, but the aging time to approach the peak hardness is relatively long. In this paper, we will focus on the deformation behavior of the Al-Er-Zr alloy during hot deformation process and the corresponding microstructure evolution. The results show that the strain can induce rapid precipitation in Al-Er-Zr alloy during hot working conditions. The mechanism of the rapid precipitation and its effect on thermomechanical processing are discussed.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2014
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2016
    In:  Materials Science Forum Vol. 850 ( 2016-3), p. 768-772
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 850 ( 2016-3), p. 768-772
    Abstract: The as-casted Al-Si-Mg alloy was treated by solution and aging process of 545°C/10h/water cooling plus 175°C/6h /air cooling. The effect of heat treatment on the microstructure and mechanical property of Al-Si-Mg was investigated by metallographic analysis, scanning electron microscopy, energy dispersion spectrum analysis and mechanical testing. The experimental results showed that the alloy had the ultimate tensile strength (UTS) of 317MPa and the elongation of 2%, and suitable for squeezing cast. During solution treatment, the plate-like eutectic Si particles became small granular or short bacilliform morphology, and the non-uniformly distributed eutectic phase was eliminated substantially. In addition, Si particles distributed uniformly and finely in the matrix. The tensile strength of as-casted alloy was 180 MPa, while it was up to 317 MPa after solution and aging treatment process, and the elongation increased from 2% to 3%, which is consistent with the microstructure. Fracture surface analysis showed that fracture mode of the alloy transformed from brittle fracture into co-existence of ductile fracture and brittle fracture during T6 treatment.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2016
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2016
    In:  Materials Science Forum Vol. 877 ( 2016-11), p. 127-131
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 877 ( 2016-11), p. 127-131
    Abstract: Al-Si alloy was widely applied in automobile engine parts to realize weight reduction. The influence of casting temperature on the microstructure of die casting Al-Si-Cu-Mg alloy was studied in this paper. Based on ZL 101 alloy, the strength was improved with addition of 0.8% Cu element. The influence of pouring temperature on microstructure was investigated using optical microscope and electron probe micro-analysis (EPMA), and T1 heat treatment was optimized. The primary α-Al was more coarsened when the pouring temperature rose from 660 ̊C to 690 ̊C. The solid solubility of Cu in α-Al was 0.2406 wt %, analyzed by EPMA. Considering the solid solubility of Cu and avoiding porosity at high-temperature, T1 heat treatment was reasonable and affective. The micro-hardness reached to a peak value of 114 HV during aging at a temperature of 175 ̊C after 10 h. Therefore, 175 ̊C×10h aging was the most appropriate heat treatment process.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2016
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...