GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nie, Jun  (4)
  • Xie, Xue  (4)
Material
Publisher
Person/Organisation
Language
Years
  • 1
    In: Agronomy, MDPI AG, Vol. 13, No. 6 ( 2023-06-19), p. 1645-
    Abstract: Overuse of chemical fertilizer (CF) causes damage to soil and the environment. To reveal the process of the response of crop rhizospheric and bulk soil fertility and the bacterial community to long-term CF conditions, CF application and nonfertilization (CK, control) treatments were used in a long-term (12-year) fertilization experiment. Long-term CF application significantly increased the soil organic matter, total nitrogen, and available phosphorus contents (p 〈 0.05), increased the available nitrogen (AN) and potassium (AK) contents to varying degrees, and decreased the soil pH in both rice rhizospheric soil and bulk soil. In addition, the bacterial Shannon and Ace indices in rice rhizospheric soil under the CF treatment were all higher than those under the control (CK) treatment, and the bulk soil bacteria showed the opposite trend. The LEfSe results showed that unidentified_Gammaproteobacteria and Geobacter (genera) were significantly enriched in the rhizospheric and bulk soil of rice under the CK treatment, respectively. Gemmatimonadetes (phylum) and Nitrospirae (phylum) + Thiobacillus (genus) were significantly enriched in the rice rhizospheric and bulk soil under the CF treatment. Only AK and AN had strong positive correlations with soil bacteria. Long-term CF application accelerated the migration of soil bacteria from the bulk soil to the rhizosphere, thus improving soil fertility and nutrient cycling.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Agronomy, MDPI AG, Vol. 13, No. 3 ( 2023-03-18), p. 910-
    Abstract: Cadmium (Cd) pollution poses a growing threat to rice production in acidic paddies. In south China, a common agricultural practice involves the combined utilization of Chinese milk vetch (M) and rice straw (R). However, it is unclear how the addition of lime to these amendments affects Cd bioavailability and accumulation in soil. Control (CK), chemical fertilizer (F), Chinese milk vetch + rice straw + chemical fertilizer (MRF), and Chinese milk vetch + rice straw + chemical fertilizer + lime (MRFL) treatments were applied to develop a kind of green, efficient, and practical amendment for acidic paddies. We conducted a microplot experiment to explore Cd immobilization in paddy soil and the Cd content in rice grains with these treatments. The results showed that compared with F, the rice Cd in the MRF and MRFL treatments were significantly decreased by 51.7% and 65.2% in early rice and 23.0% and 43.3% in late rice, respectively. Both the MRF and MRFL treatments significantly reduced soil available Cd and weak acid-extractable cadmium (Aci-Cd) concentrations and increased soil organic matter (SOM), exchangeable cation concentrations, and pH, which converted Cd into a stable form in soil. In addition, the MRF and MRFL treatments increased soil pH value by reducing soil exchangeable hydrogen ion concentration (E-H). Additionally, recombination of Cd forms was the primary factor in the reduction in available Cd concentration according to partial least squares path modeling (PLS-PM) analysis. The Cd concentration of rice grains was primarily associated with soil available Cd, soil pH value, and SOM. Overall, these results provide useful data and novel insights into reducing rice grain Cd in south China.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: European Journal of Soil Biology, Elsevier BV, Vol. 122 ( 2024-09), p. 103652-
    Type of Medium: Online Resource
    ISSN: 1164-5563
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 1150007-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Agronomy, MDPI AG, Vol. 14, No. 4 ( 2024-03-26), p. 675-
    Abstract: The excessive application of chemical fertilizers in rice fields exacerbates soil degradation and poses a threat to food security. Achieving an increase in rice production and minimizing environmental costs are inevitable requirements for achieving sustainable rice production. The synergistic utilization of rice straw (RS) and Chinese milk vetch (MV) is a sustainable measure to improve soil quality in Southern China. How this management strategy impacts agricultural productivity and soil carbon (C) sequestration under different fertilization conditions is unclear. Several treatments, including only chemical fertilizer (F), F + MV (FM), F + RS (FS), and F + MV + RS (FMS) under a standard rate of nitrogen (N100) and 40% reduced nitrogen (N60) levels were designed to explore changes in rice yields and soil organic carbon (SOC) concentrations, stocks, and soil labile organic C fractions (permanganate oxidizable C) during 2018–2020 in a double-rice-cropping system. The results show that the FMS treatment reduced soil bulk density to alleviate soil compaction and improved the soil carbon management index. The synergistic utilization of MV and RS replacing 40% of the chemical N fertilizer could still maintain the rice yield. Compared to the F treatment, the average annual grain yield was significantly increased by 9.82% and 5.84% in the FMS treatment; SOC concentration was increased by 16.05% and 19.98% on average (p 〈 0.05), and SOC stock was increased by 1.78 Mg C ha−1 and 2.37 Mg C ha−1 under the N60 and N100 levels, respectively. The random forest regression model and correlation analysis demonstrated that the inputs of chemical N, organic N and C, and appropriate C/N ratio promoted soil C accumulation. Furthermore, the structural equation model analysis exhibited that the C input affects the highly labile organic carbon (HLOC) and total labile organic carbon (LOC); the HLOC had a positive effect on SOC (p 〈 0.05). N input had a significant effect on LOC and yield. Our results suggest that the synergistic utilization of MV and RS plays an important role in ensuring stable grain production, improving soil C sequestration capacity, and maintaining soil environmental health in Southern China.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...