GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nicholson, Emma  (3)
  • Xue, Shao-An  (3)
  • Medicine  (3)
  • 1
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 952-952
    Abstract: Abstract 952 Background: The efficacy of T cell therapies for cancer may be limited when targeting tumour-associated antigens (TAA) which are also self-antigens. Ongoing exposure to TAA on normal cells may lead to tolerance via anergy or exhaustion of antigen-specific T cells. Methods: We have designed a model of tolerance to TAA in which T cell receptor (TCR)-transduced CD8 T cells recognise pMDM2, a TAA that is also a ubiquitous self-antigen. CD8+ T cells were transduced with pMDM2-specific TCR (MDM-CD8) and transferred to sub-lethally irradiated B6 mice that express pMDM2 in the context of MHC Class I (H2-Kb). MDM-CD8 cells are detectable 4 weeks after transfer but show defective in vivo killing of target cells pulsed with MDM2 peptide. We have used this model to determine the mechanism of tolerance and to evaluate whether tolerant CD8+ T cells can be rescued by CD4 help. Results: To determine whether tolerance of MDM-CD8 cells was dependent upon recognition of cognate antigen, we transferred MDM-CD8 cells into mice of a different MHC background (BALB/c) which lack H2-Kb required for presentation of the TCR-recognised MDM2 peptide. When BALB/c MDM-CD8 cells were transferred to BALBc hosts their functions were preserved and they retained efficient antigen-specific cytolysis. To determine whether tolerance could be modified by provision of CD4+ T cell help, we co-transferred MDM-CD8 with transgenic OT-II CD4+ cells. OT-II cells were primed with dendritic cells (DCs) loaded with cognate pOVA323-339 or irrelevant peptide. When activated through their TCR, OT-II cells increased both the frequency of MDM2-specific CD8 cells and their cytotoxic functions, indicating that CD4 help can overcome CD8 tolerance to TAA. Ineffective antigen presentation to CD4 cells and lack of known MHC class II-restricted TAA are major limitations to providing CD4 help in T cell therapy for cancer. We therefore tested whether transfer of the MHC Class I-restricted MDM2 TCR into CD4 cells could provide help upon transfer to antigen-expressing hosts. Co-transfer of MDM2-TCR-transduced CD4 cells with CD8 cells improved antigen-specific killing of target cells when compared to single transfer of either TCR-transduced CD8 or CD4 cells. Conclusion: CD4 cells rendered capable of responding to an MHC class I restricted TAA by TCR transfer can rescue tolerance developing in a CD8 population with the same specificity. This is potentially a novel way to circumvent defective immune responses arising in adoptively transferred effector cells due to prolonged exposure to cognate antigen on normal host cells. Disclosures: Stauss: Cell Medica: Scientific Advisor Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 194, No. 3 ( 2015-02-01), p. 1080-1089
    Abstract: Ag receptors used for cancer immunotherapy are often directed against tumor-associated Ags also expressed in normal tissues. Targeting of such Ags can result in unwanted autoimmune attack of normal tissues or induction of tolerance in therapeutic T cells. We used a murine model to study the phenotype and function of T cells redirected against the murine double minute protein 2 (MDM2), a tumor-associated Ag that shows low expression in many normal tissues. Transfer of MDM2-TCR–engineered T cells into bone marrow chimeric mice revealed that Ag recognition in hematopoietic tissues maintained T cell function, whereas presentation of MDM2 in nonhematopoietic tissues caused reduced effector function. TCR-engineered CD8+ T cells underwent rapid turnover, downmodulated CD8 expression, and lost cytotoxic function. We found that MDM2-TCR–engineered CD4+ T cells provided help and restored cytotoxic function of CD8+ T cells bearing the same TCR. Although the introduction of the CD8 coreceptor enhanced the ability of CD4+ T cells to recognize MDM2 in vitro, the improved self-antigen recognition abolished their ability to provide helper function in vivo. The data indicate that the same class I–restricted TCR responsible for Ag recognition and tolerance induction in CD8+ T cells can, in the absence of the CD8 coreceptor, elicit CD4 T cell help and partially reverse tolerance. Thus MHC class I–restricted CD4+ T cells may enhance the efficacy of therapeutic TCR-engineered CD8+ T cells and can be readily generated with the same TCR.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2015
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 1367-1367
    Abstract: Background:Patients with acute myeloid leukemia (AML), myelodysplasia (MDS) or tyrosine kinase inhibitor resistant chronic myeloid leukemia (CML) who are unsuitable for consolidative allogeneic stem cell transplantation (alloSCT) have high relapse rates following chemotherapy. Wilms' tumor 1 (WT1) is highly expressed in the majority of acute myeloid leukemias (AML) and in many subtypes of myelodysplasia (MDS) as well as other hematological and solid tumors. WT1 is an intracellular antigen, which makes it difficult to target using current Chimeric Antigen Receptor (CAR)-T cell technologies. The use of genetically modified T cells expressing WT1-specific α/β T cell receptors can re-direct T cell specificity via the recognition of intracellular peptides presented by MHC molecules on the malignant cell surface. Phase I clinical trials of WT1-TCR gene-modified T cells have been conducted in the settings of relapsed disease and post-alloSCT and preliminary data suggests this treatment approach is safe and potentially clinically effective in these cohorts (Tawara et al. Blood. 2017;130(18):1985-94; Chapuis et al, Nat Med. 2019;25(7):1064-72). Methods:We report a phase I/II safety and dose escalation study evaluating WT1-TCR gene-modified autologous T cells in HLA-A*0201 positive patients with AML, MDS and CML, unsuitable for alloSCT (NCT02550535) (Fig 1A). Patient T cells were harvested by leucapheresis and transduced with a retroviral vector construct encoding the codon optimised variable and constant a and bchains of the human pWT126-specific TCR separated by a self-cleaving 2A sequence (Fig 1B). Bulk transduced T cells were analysed by flow cytometry (CD3, CD8 and Vb2.1) prior to infusion and at regular intervals post-infusion. A quantitative PCR assay was developed to identify WT1-TCR expressing T cells in the peripheral blood post infusion. Patients received minimal conditioning with fludarabine and methylprednisolone prior to transfer of transduced T cells. All subjects were followed for a minimum of 12 months or until death. Results:A total of 10 patients (6 AML, 3 MDS and 1 TKI- resistant CML) were recruited. The mean age was 71.3 years (range 64-75) and all had high risk disease (by cytogenetic or clinical criteria). All AML patients were in complete morphological remission at the time of trial entry, whilst MDS patients had ≤ 15% blasts on bone marrow examination. All 10 patients received the gene-modified T cells in dose escalation cohorts (seven patients received £2x107/kg and three patients received £1x108/kg bulk WT1 TCR transduced cells). No adverse events directly attributable to the investigational product were recorded apart from one possible cytokine release syndrome, which was managed without tociluzimab. Transferred T cells demonstrated in vivoproliferation commensurate with maintenance of functional capacity despite ex vivo manipulation (Fig 1C and 1D). The TCR-transduced T cells were detectable in all patients at 28 days and in 7 patients persisted throughout the study period (Fig 1E). All 6 AML patients were alive at last follow up (median 12 months; range 7-12.8 months). The 3 patients with MDS had a median survival of 3 months (range 2.1-3.96 months) post T cell infusion. 2 died from progressive disease and one from other causes. 2 patients discontinued the study early due to disease progression. Conclusions: This is the second reported phase I/II clinical trial of autologous WT1-TCR gene-modified T cells for treatment of AML and MDS in a high-risk cohort of patients not suitable for alloSCT. We have shown that the WT1-TCR T cells demonstrated a strong safety profile without detectable on-target, off-tumour toxicity and no severe adverse events in the ten patients treated. An important cause of treatment failure for adoptive cellular therapies is the lack of persistence of transferred T cells leading to loss of disease specific effects. We demonstrated that autologous WT1-TCR T cells proliferated in vivoand persisted for many months. Recent work within our group (in press) has shown that TCRs modified to include key framework residues, show increased TCR expression and functional improvement. These modifications could be incorporated into future studies to improve efficacy. This data supports the rationale for a larger, phase II trial of WT1-TCR T cells in myeloid malignancies in patients for whom alloSCT is not appropriate, in order to assess clinical efficacy. Figure 1 Disclosures Morris: Quell Therapeutics: Consultancy, Other: Scientific Founder,stock; Orchard Therapeutics: Consultancy. Qasim:CellMedica: Research Funding; Bellicum: Research Funding; UCLB: Other: revenue share eligibility; Autolus: Equity Ownership; Orchard Therapeutics: Equity Ownership; Servier: Research Funding. Mount:Gamma Delta Therapeutics: Employment. Inman:Cellmedica: Employment. Gunter:Cellmedica: Employment. Stauss:Cell Medica: Other: I have stock; Quell Therapeutics: Consultancy, Other: I have stock.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...