GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (1)
  • Nguyen, Thanh  (1)
Material
Publisher
  • Springer Science and Business Media LLC  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Nature Communications Vol. 10, No. 1 ( 2019-09-12)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2019-09-12)
    Abstract: Enhancing the piezoresistive effect is crucial for improving the sensitivity of mechanical sensors. Herein, we report that the piezoresistive effect in a semiconductor heterojunction can be enormously enhanced via optoelectronic coupling. A lateral photovoltage, which is generated in the top material layer of a heterojunction under non-uniform illumination, can be coupled with an optimally tuned electric current to modulate the magnitude of the piezoresistive effect. We demonstrate a tuneable giant piezoresistive effect in a cubic silicon carbide/silicon heterojunction, resulting in an extraordinarily high gauge factor of approximately 58,000, which is the highest gauge factor reported for semiconductor-based mechanical sensors to date. This gauge factor is approximately 30,000 times greater than that of commercial metal strain gauges and more than 2,000 times greater than that of cubic silicon carbide. The phenomenon discovered can pave the way for the development of ultra-sensitive sensor technology.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...