GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nguyen, Linh Phuong  (5)
  • Pham, Dung Thuy Nguyen  (5)
  • 1
    In: Journal of Biomaterials Applications, SAGE Publications, Vol. 37, No. 5 ( 2022-11), p. 872-880
    Abstract: Liposomal encapsulation is a drug delivery strategy with many advantages, such as improved bioavailability, ability to carry large drug loads, as well as controllability and specificity towards various targeted diseased tissues. Currently, most preparation techniques require an additional extrusion or filtering step to obtain monodisperse liposomes with the size of less than 100 nm. In this study, a compact liposome extruder was designed at a cost of $4.00 and used to synthesize liposome suspensions with defined particle size and high homogeneity for Murrayafoline A (Mu-A) loading and release. The synthesized MuA-loaded liposomes displayed a biphasic drug release and remained stable under the storage condition of 4°C. They also significantly reduced the viability of HepG2 cells in the cancer spheroids by 25%. The low-cost, flexible liposome extruder would allow the researchers to study liposomes and their applications in a cost-effective manner.
    Type of Medium: Online Resource
    ISSN: 0885-3282 , 1530-8022
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2022
    detail.hit.zdb_id: 2072559-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Diagnostics, MDPI AG, Vol. 13, No. 8 ( 2023-04-11), p. 1394-
    Abstract: Drug development is a complex and expensive process from new drug discovery to product approval. Most drug screening and testing rely on in vitro 2D cell culture models; however, they generally lack in vivo tissue microarchitecture and physiological functionality. Therefore, many researchers have used engineering methods, such as microfluidic devices, to culture 3D cells in dynamic conditions. In this study, a simple and low-cost microfluidic device was fabricated using Poly Methyl Methacrylate (PMMA), a widely available material, and the total cost of the completed device was USD 17.75. Dynamic and static cell culture examinations were applied to monitor the growth of 3D cells. α-MG-loaded GA liposomes were used as the drug to test cell viability in 3D cancer spheroids. Two cell culture conditions (i.e., static and dynamic) were also used in drug testing to simulate the effect of flow on drug cytotoxicity. Results from all assays showed that with the velocity of 0.005 mL/min, cell viability was significantly impaired to nearly 30% after 72 h in a dynamic culture. This device is expected to improve in vitro testing models, reduce and eliminate unsuitable compounds, and select more accurate combinations for in vivo testing.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Materials Science: Materials in Medicine, Springer Science and Business Media LLC, Vol. 33, No. 10 ( 2022-10-04)
    Abstract: Hepatocellular carcinoma is a common type of cancer associated with a high mortality rate. Among several bioactive compounds, Murrayafoline A (MuA) has been proved as a bio substance that exhibits great potentials in treating liver cancer. In order to overcome the high cytotoxicity and low solubility of MuA, a delivery system based on nanocarriers is necessary to deliver MuA towards the desired target. In the present study, 18β-glycyrrhetinic acid (GA), which is known as a ligand for liver targeting, was used to construct the cholesterol-poly (ethylene glycol)-glycyrrhetinic acid (GA-PEG-Chol) conjugate and liposome for MuA administration. The compound was then examined for therapeutic efficacy and safety in HUVEC and HepG2 cells in 2D and 3D cell cultures. Results have shown that MuA-loaded liposomes had IC 50 value of 2 µM in HepG2 and had the cytosolic absorption of 8.83 ± 0.97 ng/10 5 cells, while The IC50 value of MuA-loaded liposomes in HUVEC cell lines was 15 µM and the the cytosolic absorption was recorded as 3.62 ± 0.61 cells. The drug test on the 3D cancer sphere platform of the HepG2 cancer sphere showed that MuA-loaded GA liposomes had the highest efficacy at a concentration of 100 µg/mL. In short, these results suggest that MuA-loaded GA liposomes have the potential for maintenance drug delivery and liver targeting.
    Type of Medium: Online Resource
    ISSN: 1573-4838
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2016995-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Processes, MDPI AG, Vol. 11, No. 8 ( 2023-08-04), p. 2344-
    Abstract: α–Mangostin, which is a natural xanthone compound, inhibits the metastasis and survival of various cancer cell types. However, its therapeutic effectiveness is limited by low water solubility and very poor absorption. There are several studies that developed the drug delivery system for α–mangostin, but they are still a remaining challenge. Drug delivery techniques are severely hampered by the breakdown of nanoparticles inside endosomes. The abrasive chemical environment in these compartments causes both the nanoparticles and the encapsulated α–mangostin to degrade throughout the course of the voyage. Intracellular defenses against external materials refer to this collective mechanism. A pH-responsive liposome named PAsp(DET-Cit)–Toc, made of lipids and a charge-conversion polymer (CCP), has been created for the targeted transport of α–mangostin in order to avoid this deteriorative outcome. The average hydrodynamic size of CCP–liposome particles is 98.59 ± 5.1 nm with a PDI of 0.098 ± 0.02 and a negative zeta potential of 22.31 ± 2.4 mV. TEM showed the shape of the spherical CCP–liposomes. α–Mangostin is successfully captured inside CCP–liposome and the loading yield reached the highest encapsulation efficiency of 83% with 150 μg/mL of α–mangostin. In the acidic condition of pH 5.0, an initial burst of α–mangostin reached 50% after 6 h in buffer solution. CCP–liposomes could escape from endosomes even after 3 h, and almost 80% of CCP–liposomes escaped after 24 h. The cell ability of α–mangostin-loaded-CCP–liposome incubated in buffer solutions of 5.0 decreased significantly and was close to free α–mangostin. Our data proved that α–mangostin-loaded CCP–liposome delivered more effectively α–mangostin into cells and prevented the degradation of α–mangostin inside cells, especially endosomal degradation.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Personalized Medicine, MDPI AG, Vol. 13, No. 4 ( 2023-03-31), p. 617-
    Abstract: Peripheral neuropathy is a common complication of type 2 diabetes mellitus (T2DM) that results in nerve conduction abnormalities. This study aimed to investigate the parameters of nerve conduction in lower extremities among T2DM patients in Vietnam. A cross-sectional study was conducted on 61 T2DM patients aged 18 years and older, diagnosed according to the American Diabetes Association’s criteria. Data on demographic characteristics, duration of diabetes, hypertension, dyslipidemia, neuropathy symptoms, and biochemical parameters were collected. Nerve conduction parameters were measured in the tibial and peroneal nerves, including peripheral motor potential time, response amplitude M, and motor conduction speed, as well as sensory conduction in the shallow nerve. The study found a high rate of peripheral neuropathy among T2DM patients in Vietnam, with decreased conduction rate, motor response amplitude, and nerve sensation. The incidence of nerve damage was highest in the right peroneal nerve and left peroneal nerve (86.7% for both), followed by the right tibial nerve and left tibial nerve (67.2% and 68.9%, respectively). No significant differences were found in the rate of nerve defects between different age groups, body mass index (BMI) groups, or groups with hypertension or dyslipidemia. However, a statistically significant association was found between the rate of clinical neurological abnormalities and the duration of diabetes (p 〈 0.05). Patients with poor glucose control and/or decreased renal function also had a higher incidence of nerve defects. The study highlights the high incidence of peripheral neuropathy among T2DM patients in Vietnam and the association between nerve conduction abnormalities and poor glucose control and/or decreased renal function. The findings underscore the importance of early diagnosis and management of neuropathy in T2DM patients to prevent serious complications.
    Type of Medium: Online Resource
    ISSN: 2075-4426
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662248-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...