GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (3)
  • Ng, Benjamin  (3)
Material
Publisher
  • American Meteorological Society  (3)
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Climate Vol. 27, No. 11 ( 2014-06-01), p. 3904-3919
    In: Journal of Climate, American Meteorological Society, Vol. 27, No. 11 ( 2014-06-01), p. 3904-3919
    Abstract: A feature of the Indian Ocean dipole (IOD) is its positive skewness, with cold IOD east pole (IODE) sea surface temperature anomalies (SSTAs) exhibiting larger amplitudes than warm SSTAs. Using the coupled Geophysical Fluid Dynamics Laboratory Earth System Model with Modular Ocean Model version 4 (MOM4) component (GFDL-ESM2M), the role of nonlinear feedbacks in generating this positive skewness is investigated and their response to global warming examined. These feedbacks are a nonlinear dynamic heating process, the Bjerknes feedback, wind–evaporation–SST feedback, and SST–cloud–radiation feedback. Nonlinear dynamic heating assists IOD skewness by strongly damping warm IODE SSTAs and reinforcing cold IODE anomalies. In a warmer climate, the damping strengthens while the reinforcement weakens. The SST–thermocline relationship is part of the positive Bjerknes feedback and contributes strongly to IOD skewness as it is weak during the development of warm IODE SSTAs, but strong during the development of cold IODE SSTAs. In response to global warming, this relationship displays weaker asymmetry associated with weaker westerly winds over the central equatorial Indian Ocean. The negative SST–cloud–radiation feedback is also asymmetric with cold IODE SSTAs less damped by incoming shortwave radiation. Under global warming, the damping of cold IODE SSTAs shows little change but warm IODE SSTAs become more damped. This stronger damping is a symptom of negative IODs becoming stronger in amplitude due to the mean IODE thermocline shoaling. The wind–evaporation–SST feedback does not contribute to IOD asymmetry with cold IODE SSTAs decreasing evaporation, which in turn warms the surface. However, as this study focuses on one model, the response of these feedbacks to global warming is uncertain.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 7 ( 2015-04-01), p. 2564-2583
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 7 ( 2015-04-01), p. 2564-2583
    Abstract: The tropical Indian Ocean has experienced a faster warming rate in the west than in the east over the twentieth century. The warming pattern resembles a positive Indian Ocean dipole (IOD) that is well captured by climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), forced with the two main anthropogenic forcings, long-lived greenhouse gases (GHGs), and aerosols. However, much less is known about how GHGs and aerosols influence the IOD asymmetry, including the negative sea surface temperature (SST) skewness in the east IOD pole (IODE). Here, it is shown that the IODE SST negative skewness is more enhanced by aerosols than by GHGs using single-factor forcing experiments from 10 CMIP5 models. Aerosols induce a greater mean zonal thermocline gradient along the tropical Indian Ocean than that forced by GHGs, whereby the thermocline is deeper in the east relative to the west. This generates strong asymmetry in the SST response to thermocline anomalies between warm and cool IODE phases in the aerosol-only experiments, enhancing the negative IODE SST skewness. Other feedback processes involving zonal wind, precipitation, and evaporation cannot solely explain the enhanced SST skewness by aerosols. An interexperiment comparison in one model with strong skewness confirms that the mean zonal thermocline gradient across the Indian Ocean determines the magnitude of the SST–thermocline asymmetry, which in turn controls the SST skewness strength. The findings suggest that as aerosol emissions decline and GHGs increase, this will likely contribute to a future weakening of the IODE SST skewness.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate Vol. 34, No. 6 ( 2021-03), p. 2205-2218
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 6 ( 2021-03), p. 2205-2218
    Abstract: El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual climate fluctuations with wide-ranging socioeconomic and environmental impacts. Understanding the eastern Pacific (EP) and central Pacific (CP) El Niño response to a warmer climate is paramount, yet the role of internal climate variability in modulating their response is not clear. Using large ensembles, we find that internal variability generates a spread in the standard deviation and skewness of these two El Niño types that is similar to the spread of 17 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that realistically simulate ENSO diversity. Based on 40 Community Earth System Model Large Ensemble (CESM-LE) and 99 Max Planck Institute for Meteorology Grand Ensemble (MPI-GE) members, unforced variability can explain more than 90% of the historical EP and CP El Niño standard deviation and all of the ENSO skewness spread in the 17 CMIP5 models. Both CESM-LE and the selected CMIP5 models show increased EP and CP El Niño variability in a warmer climate, driven by a stronger mean vertical temperature gradient in the upper ocean and faster surface warming of the eastern equatorial Pacific. However, MPI-GE shows no agreement in EP or CP standard deviation change. This is due to weaker sensitivity to the warming signal, such that when the eastern equatorial Pacific surface warming is faster, the change in upper ocean vertical temperature gradient tends to be weaker. This highlights that individual models produce a different ENSO response in a warmer climate, and that considerable uncertainty within the CMIP5 ensemble may be caused by internal climate variability.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...