GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Diabetes Association  (3)
  • Ng, Alex C.W.  (3)
  • 1
    In: Diabetes, American Diabetes Association, Vol. 67, No. 7 ( 2018-07-01), p. 1414-1427
    Abstract: Identification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 × 10−8) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2018
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Diabetes Care, American Diabetes Association, Vol. 43, No. 9 ( 2020-09-01), p. 2257-2265
    Abstract: Several studies support potential links between relative leukocyte telomere length (rLTL), a biomarker of biological aging, and type 2 diabetes. This study investigates relationships between rLTL and incident cardiovascular disease (CVD) in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Consecutive Chinese patients with type 2 diabetes (N = 5,349) from the Hong Kong Diabetes Register for whom DNA obtained at baseline was stored and follow-up data were available were studied. rLTL was measured by using quantitative PCR. CVD was diagnosed on the basis of ICD-9 code. RESULTS Mean follow-up was 13.4 years (SD 5.5 years). rLTL was correlated inversely with age, diabetes duration, blood pressure, HbA1c, and urine albumin-to-creatinine ratio (ACR), and positively with estimated glomerular filtration rate (eGFR) (all P & lt; 0.001). Subjects with CVD at baseline had a shorter rLTL (4.3 ± 1.2 ΔΔCt) than did subjects without CVD (4.6 ± 1.2 ΔΔCt) (P & lt; 0.001). Of the 4,541 CVD-free subjects at baseline, the 1,140 who developed CVD during follow-up had a shorter rLTL (4.3 ± 1.2 ΔΔCt) than those who remained CVD-free after adjusting for age, sex, smoking, and albuminuria status (4.7 ± 1.2 ΔΔCt) (P & lt; 0.001). In Cox regression models, shorter rLTL was associated with higher risk of incident CVD (for each unit decrease, hazard ratio 1.252 [95% CI 1.195–1.311], P & lt; 0.001), which remained significant after adjusting for age, sex, BMI, systolic blood pressure, LDL cholesterol, HbA1c, eGFR, and ACR (hazard ratio 1.141 [95% CI 1.084–1.200], P & lt; 0.001). CONCLUSIONS rLTL is significantly shorter in patients with type 2 diabetes and CVD, is associated with cardiometabolic risk factors, and is independently associated with incident CVD. Telomere length may be a useful biomarker for CVD risk in patients with type 2 diabetes.
    Type of Medium: Online Resource
    ISSN: 0149-5992 , 1935-5548
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2020
    detail.hit.zdb_id: 1490520-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Diabetes Care, American Diabetes Association, Vol. 45, No. 3 ( 2022-03-01), p. 701-709
    Abstract: Several studies support associations between relative leukocyte telomere length (rLTL), a biomarker of biological aging and type 2 diabetes. This study investigates the relationship between rLTL and the risk of glycemic progression in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS In this cohort study, consecutive Chinese patients with type 2 diabetes (N = 5,506) from the Hong Kong Diabetes Register with stored baseline DNA and available follow-up data were studied. rLTL was measured using quantitative PCR. Glycemic progression was defined as the new need for exogenous insulin. RESULTS The mean (SD) age of the 5,349 subjects was 57.0 (13.3) years, and mean (SD) follow-up was 8.8 (5.4) years. Baseline rLTL was significantly shorter in the 1,803 subjects who progressed to insulin requirement compared with the remaining subjects (4.43 ± 1.16 vs. 4.69 ± 1.20). Shorter rLTL was associated with a higher risk of glycemic progression (hazard ratio [95% CI] for each unit decrease [to ∼0.2 kilobases] : 1.10 [1.06–1.14]), which remained significant after adjusting for confounders. Baseline rLTL was independently associated with glycemic exposure during follow-up (β = −0.05 [−0.06 to −0.04] ). Each 1-kilobase decrease in absolute LTL was on average associated with a 1.69-fold higher risk of diabetes progression (95% CI 1.35–2.11). Two-sample Mendelian randomization analysis showed per 1-unit genetically decreased rLTL was associated with a 1.38-fold higher risk of diabetes progression (95% CI 1.12–1.70). CONCLUSIONS Shorter rLTL was significantly associated with an increased risk of glycemic progression in individuals with type 2 diabetes, independent of established risk factors. Telomere length may be a useful biomarker for glycemic progression in people with type 2 diabetes.
    Type of Medium: Online Resource
    ISSN: 0149-5992
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2022
    detail.hit.zdb_id: 1490520-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...