GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 60, No. 5 ( 2022-04-26), p. 726-739
    Abstract: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is recommended for measuring circulating steroids. However, assays display technical heterogeneity. So far, reproducibility of corticosteroid LC-MS/MS measurements has received scant attention. The aim of the study was to compare LC-MS/MS measurements of cortisol, 17OH-progesterone and aldosterone from nine European centers and assess performance according to external quality assessment (EQA) materials and calibration. Methods Seventy-eight patient samples, EQA materials and two commercial calibration sets were measured twice by laboratory-specific procedures. Results were obtained by in-house (CAL1) and external calibrations (CAL2 and CAL3). We evaluated intra and inter-laboratory imprecision, correlation and agreement in patient samples, and trueness, bias and commutability in EQA materials. Results Using CAL1, intra-laboratory CVs ranged between 2.8–7.4%, 4.4–18.0% and 5.2–22.2%, for cortisol, 17OH-progesterone and aldosterone, respectively. Trueness and bias in EQA materials were mostly acceptable, however, inappropriate commutability and target value assignment were highlighted in some cases. CAL2 showed suboptimal accuracy. Median inter-laboratory CVs for cortisol, 17OH-progesterone and aldosterone were 4.9, 11.8 and 13.8% with CAL1 and 3.6, 10.3 and 8.6% with CAL3 (all p 〈 0.001), respectively. Using CAL1, median bias vs. all laboratory-medians ranged from −6.6 to 6.9%, −17.2 to 7.8% and −12.0 to 16.8% for cortisol, 17OH-progesterone and aldosterone, respectively. Regression lines significantly deviated from the best fit for most laboratories. Using CAL3 improved cortisol and 17OH-progesterone between-method bias and correlation. Conclusions Intra-laboratory imprecision and performance with EQA materials were variable. Inter-laboratory performance was mostly within specifications. Although residual variability persists, adopting common traceable calibrators and RMP-determined EQA materials is beneficial for standardization of LC-MS/MS steroid measurements.
    Type of Medium: Online Resource
    ISSN: 1434-6621 , 1437-4331
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 61, No. 1 ( 2023-01-27), p. 67-77
    Abstract: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) panels that include glucocorticoid-related steroids are increasingly used to characterize and diagnose adrenal cortical diseases. Limited information is currently available about reproducibility of these measurements among laboratories. The aim of the study was to compare LC-MS/MS measurements of corticosterone, 11-deoxycortisol and cortisone at eight European centers and assess the performance after unification of calibration. Methods Seventy-eight patient samples and commercial calibrators were measured twice by laboratory-specific procedures. Results were obtained according to in-house and external calibration. We evaluated intra-laboratory and inter-laboratory imprecision, regression and agreement against performance specifications derived from 11-deoxycortisol biological variation. Results Intra-laboratory CVs ranged between 3.3 and 7.7%, 3.3 and 11.8% and 2.7 and 12.8% for corticosterone, 11-deoxycortisol and cortisone, with 1, 4 and 3 laboratories often exceeding the maximum allowable imprecision (MAI), respectively. Median inter-laboratory CVs were 10.0, 10.7 and 6.2%, with 38.5, 50.7 and 2.6% cases exceeding the MAI for corticosterone, 11-deoxycortisol and cortisone, respectively. Median laboratory bias vs. all laboratory-medians ranged from −5.6 to 12.3% for corticosterone, −14.6 to 12.4% for 11-deoxycortisol and −4.0 to 6.5% for cortisone, with few cases exceeding the total allowable error. Modest deviations were found in regression equations among most laboratories. External calibration did not improve 11-deoxycortisol and worsened corticosterone and cortisone inter-laboratory comparability. Conclusions Method imprecision was variable. Inter-laboratory performance was reasonably good. However, cases with imprecision and total error above the acceptable limits were apparent for corticosterone and 11-deoxycortisol. Variability did not depend on calibration but apparently on imprecision, accuracy and specificity of individual methods. Tools for improving selectivity and accuracy are required to improve harmonization.
    Type of Medium: Online Resource
    ISSN: 1434-6621 , 1437-4331
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...