GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2014
    In:  Journal of Virology Vol. 88, No. 22 ( 2014-11-15), p. 13469-13481
    In: Journal of Virology, American Society for Microbiology, Vol. 88, No. 22 ( 2014-11-15), p. 13469-13481
    Abstract: The adenovirus E1A gene is the first gene expressed upon viral infection. E1A remodels the cellular environment to maximize permissivity for viral replication. E1A is also the major transactivator of viral early gene expression and a coregulator of a large number of cellular genes. E1A carries out its functions predominantly by binding to cellular regulatory proteins and altering their activities. The unstructured nature of E1A enables it to bind to a large variety of cellular proteins and form new molecular complexes with novel functions. The C terminus of E1A is the least-characterized region of the protein, with few known binding partners. Here we report the identification of cellular factor DREF (ZBED1) as a novel and direct binding partner of E1A. Our studies identify a dual role for DREF in the viral life cycle. DREF contributes to activation of gene expression from all viral promoters early in infection. Unexpectedly, it also functions as a growth restriction factor for adenovirus as knockdown of DREF enhances virus growth and increases viral genome copy number late in the infection. We also identify DREF as a component of viral replication centers. E1A affects the subcellular distribution of DREF within PML bodies and enhances DREF SUMOylation. Our findings identify DREF as a novel E1A C terminus binding partner and provide evidence supporting a role for DREF in viral replication. IMPORTANCE This work identifies the putative transcription factor DREF as a new target of the E1A oncoproteins of human adenovirus. DREF was found to primarily localize with PML nuclear bodies in uninfected cells and to relocalize into virus replication centers during infection. DREF was also found to be SUMOylated, and this was enhanced in the presence of E1A. Knockdown of DREF reduced the levels of viral transcripts detected at 20 h, but not at 40 h, postinfection, increased overall virus yield, and enhanced viral DNA replication. DREF was also found to localize to viral promoters during infection together with E1A. These results suggest that DREF contributes to activation of viral gene expression. However, like several other PML-associated proteins, DREF also appears to function as a growth restriction factor for adenovirus infection.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Viruses, MDPI AG, Vol. 12, No. 6 ( 2020-06-03), p. 610-
    Abstract: Viruses alter a multitude of host-cell processes to create a more optimal environment for viral replication. This includes altering metabolism to provide adequate substrates and energy required for replication. Typically, viral infections induce a metabolic phenotype resembling the Warburg effect, with an upregulation of glycolysis and a concurrent decrease in cellular respiration. Human adenovirus (HAdV) has been observed to induce the Warburg effect, which can be partially attributed to the adenovirus protein early region 4, open reading frame 1 (E4orf1). E4orf1 regulates a multitude of host-cell processes to benefit viral replication and can influence cellular metabolism through the transcription factor avian myelocytomatosis viral oncogene homolog (MYC). However, E4orf1 does not explain the full extent of Warburg-like HAdV metabolic reprogramming, especially the accompanying decrease in cellular respiration. The HAdV protein early region 1A (E1A) also modulates the function of the infected cell to promote viral replication. E1A can interact with a wide variety of host-cell proteins, some of which have been shown to interact with metabolic enzymes independently of an interaction with E1A. To determine if the HAdV E1A proteins are responsible for reprogramming cell metabolism, we measured the extracellular acidification rate and oxygen consumption rate of A549 human lung epithelial cells with constitutive endogenous expression of either of the two major E1A isoforms. This was followed by the characterization of transcript levels for genes involved in glycolysis and cellular respiration, and related metabolic pathways. Cells expressing the 13S encoded E1A isoform had drastically increased baseline glycolysis and lower maximal cellular respiration than cells expressing the 12S encoded E1A isoform. Cells expressing the 13S encoded E1A isoform exhibited upregulated expression of glycolysis genes and downregulated expression of cellular respiration genes. However, tricarboxylic acid cycle genes were upregulated, resembling anaplerotic metabolism employed by certain cancers. Upregulation of glycolysis and tricarboxylic acid cycle genes was also apparent in IMR-90 human primary lung fibroblast cells infected with a HAdV-5 mutant virus that expressed the 13S, but not the 12S encoded E1A isoform. In conclusion, it appears that the two major isoforms of E1A differentially influence cellular glycolysis and oxidative phosphorylation and this is at least partially due to the altered regulation of mRNA expression for the genes in these pathways.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...