GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Processes, MDPI AG, Vol. 9, No. 12 ( 2021-11-25), p. 2121-
    Abstract: Preparative and process chromatography is a versatile unit operation for the capture, purification, and polishing of a broad variety of molecules, especially very similar and complex compounds such as sugars, isomers, enantiomers, diastereomers, plant extracts, and metal ions such as rare earth elements. Another steadily growing field of application is biochromatography, with a diversity of complex compounds such as peptides, proteins, mAbs, fragments, VLPs, and even mRNA vaccines. Aside from molecular diversity, separation mechanisms range from selective affinity ligands, hydrophobic interaction, ion exchange, and mixed modes. Biochromatography is utilized on a scale of a few kilograms to 100,000 tons annually at about 20 to 250 cm in column diameter. Hence, a versatile and fast tool is needed for process design as well as operation optimization and process control. Existing process modeling approaches have the obstacle of sophisticated laboratory scale experimental setups for model parameter determination and model validation. For a broader application in daily project work, the approach has to be faster and require less effort for non-chromatography experts. Through the extensive advances in the field of artificial intelligence, new methods have emerged to address this need. This paper proposes an artificial neural network-based approach which enables the identification of competitive Langmuir-isotherm parameters of arbitrary three-component mixtures on a previously specified column. This is realized by training an ANN with simulated chromatograms varying in isotherm parameters. In contrast to traditional parameter estimation techniques, the estimation time is reduced to milliseconds, and the need for expert or prior knowledge to obtain feasible estimates is reduced.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Antibodies, MDPI AG, Vol. 6, No. 4 ( 2017-12-12), p. 24-
    Type of Medium: Online Resource
    ISSN: 2073-4468
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2661514-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Processes, MDPI AG, Vol. 7, No. 9 ( 2019-09-02), p. 580-
    Abstract: Process development, especially in regulated industries, where quality-by-design approaches have become a prerequisite, is cost intensive and time consuming. A main factor is the large number of experiments needed. Process modelling can reduce this number significantly by replacing experiments with simulations. However, this requires a validated model. In this paper, a process and model development workflow is presented, which focuses on implementing, parameterizing, and validating the model in four steps. The presented methods are laid out to gain, create, or generate the maximum information and process knowledge needed for successful process development. This includes design of experiments and statistical evaluations showing process robustness, sensitivity of target values to process parameters, and correlations between process and target values. Two case studies are presented. An ion exchange capture step for monoclonal antibodies focusing on high accuracy and low feed consumption; and one case study for small molecules focusing on rapid process development, emphasizing speed of parameter determination.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Processes, MDPI AG, Vol. 9, No. 1 ( 2021-01-18), p. 172-
    Abstract: Continuous manufacturing opens up new operation windows with improved product quality in contrast to documented lot deviations in batch or fed-batch operations. A more sophisticated process control strategy is needed to adjust operation parameters and keep product quality constant during long-term operations. In the present study, the applicability of a combination of spectroscopic methods was evaluated to enable Advanced Process Control (APC) in continuous manufacturing by Process Analytical Technology (PAT). In upstream processing (USP) and aqueous two-phase extraction (ATPE), Raman-, Fourier-transformed infrared (FTIR), fluorescence- and ultraviolet/visible- (UV/Vis) spectroscopy have been successfully applied for titer and purity prediction. Raman spectroscopy was the most versatile and robust method in USP, ATPE, and precipitation and is therefore recommended as primary PAT. In later process stages, the combination of UV/Vis and fluorescence spectroscopy was able to overcome difficulties in titer and purity prediction induced by overlapping side component spectra. Based on the developed spectroscopic predictions, dynamic control of unit operations was demonstrated in sophisticated simulation studies. A PAT development workflow for holistic process development was proposed.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Processes, MDPI AG, Vol. 7, No. 2 ( 2019-02-13), p. 94-
    Abstract: Innovative biologics, including cell therapeutics, virus-like particles, exosomes,recombinant proteins, and peptides, seem likely to substitute monoclonal antibodies as the maintherapeutic entities in manufacturing over the next decades. This molecular variety causes agrowing need for a general change of methods as well as mindset in the process development stage,as there are no platform processes available such as those for monoclonal antibodies. Moreover,market competitiveness demands hyper-intensified processes, including accelerated decisionstoward batch or continuous operation of dedicated modular plant concepts. This indicates gaps inprocess comprehension, when operation windows need to be run at the edges of optimization. Inthis editorial, the authors review and assess potential methods and begin discussing possiblesolutions throughout the workflow, from process development through piloting to manufacturingoperation from their point of view and experience. Especially, the state-of-the-art for modeling inred biotechnology is assessed, clarifying differences and applications of statistical, rigorousphysical-chemical based models as well as cost modeling. “Digital-twins” are described and effortsvs. benefits for new applications exemplified, including the regulation-demanded QbD (quality bydesign) and PAT (process analytical technology) approaches towards digitalization or industry 4.0based on advanced process control strategies. Finally, an analysis of the obstacles and possiblesolutions for any successful and efficient industrialization of innovative methods from processdevelopment, through piloting to manufacturing, results in some recommendations. A centralquestion therefore requires attention: Considering that QbD and PAT have been required byauthorities since 2004, can any biologic manufacturing process be approved by the regulatoryagencies without being modeled by a “digital-twin” as part of the filing documentation?
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Chemical Technology & Biotechnology, Wiley, Vol. 97, No. 9 ( 2022-09), p. 2336-2346
    Abstract: Over the last few years rapid progress has been made in adopting well‐known process modeling techniques from chemicals to biologics manufacturing. The main challenge has been analytical methods as engineers need quantitative data for their workflow. Industrialization 4.0, Internet of Things, artificial intelligence and machine learning activities up to big data analysis have taken their share in solving fundamental problems like component‐ or at least group‐specific evaluation of spectroscopic data. Besides, concerning inline analytics methods included in process analytical technology concepts the key technology has been the generation of decisive validated digital twins based on process models. This review aims to summarize the methodology to achieve a holistic understanding of process models, control and optimization by means of digital twins using the example of recent work published in this field. © 2021 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
    Type of Medium: Online Resource
    ISSN: 0268-2575 , 1097-4660
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1479465-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...