GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Moore, M A  (4)
  • 1985-1989  (4)
Material
Person/Organisation
Language
Years
  • 1985-1989  (4)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 1989
    In:  The Journal of Immunology Vol. 143, No. 8 ( 1989-10-15), p. 2534-2539
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 143, No. 8 ( 1989-10-15), p. 2534-2539
    Abstract: The effect of murine rTNF-alpha on the binding of human 125I-rCSF-1 to murine thioglycolate-elicited peritoneal exudate macrophages (PEM) was investigated. At 4 degrees C, 125I-CSF-1 binding to PEM was inhibited by preincubation with human rCSF-1, but not by other cytokines. When PEM were incubated with various cytokines at 37 degrees C, murine rTNF-alpha caused greater than 90% decrease in 125I-CSF-1 binding. This decrease was time, temperature and TNF dose dependent, and was not affected by preincubation with cycloheximide. The reduction in CSF-1-binding activity was reversed by prolonged incubation at 37 degrees C even in the presence of TNF. However, PEM preincubated with TNF subsequently washing free of residual TNF resulted in a rapid recovery of CSF-1 binding. This recovery of CSF-1-binding activity required protein synthesis. Binding studies suggested that the decrease in 125I-CSF-1 binding was most likely caused by a reduction in the number of CSF-1 receptors. In addition, preincubation with TNF at 37 degrees C inhibited 125I-CSF-1 binding on mononuclear phagocytes, including the macrophage cell line J774, bone marrow-derived macrophages, and nonelicited macrophages from three different strains of mice. In contrast, 125I-murine rTNF-alpha binding to PEM was not inhibited by preincubation with CSF-1 at 4 degrees C or 37 degrees C. These data suggest that TNF may play a role in the modulation of receptor expression on blood cells, and may point to a role for this pleiotropic cytokine in the regulation of hemopoiesis.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 1989
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The American Association of Immunologists ; 1989
    In:  The Journal of Immunology Vol. 142, No. 3 ( 1989-02-01), p. 833-835
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 142, No. 3 ( 1989-02-01), p. 833-835
    Abstract: Intravenous bolus administration of a single 2-micrograms dose of murine rTNF-alpha to BALB/c mice 20 h before sublethal total-body irradiation (7.5 Gy) conferred significant protection against radiation-induced leukopenia. Murine rTNF-alpha administration not only reduced the decline of neutrophil and total blood cell counts after radiation, but also accelerated the subsequent normalization of peripheral blood cell counts. This was accompanied by accelerated regeneration of primitive hematopoietic progenitors, as determined by the in vivo spleen CFU assay, and the in vitro assay of the more mature hematopoietic cell compartment. This demonstrates that pretreatment with murine rTNF-alpha enhances hematopoietic reconstitution after sublethal irradiation, and indicates a possible therapeutic potential for this agent in the treatment of radiation-induced myelo-suppression.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 1989
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The American Association of Immunologists ; 1988
    In:  The Journal of Immunology Vol. 140, No. 1 ( 1988-01-01), p. 94-99
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 140, No. 1 ( 1988-01-01), p. 94-99
    Abstract: The in vitro production of eosinophils from committed progenitor cells is influenced by interleukin (IL)-5 (eosinophil differentiation factor) and to a lesser extent by IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF). In primary suspension cultures of marrow cells taken from eosinophilic mice, IL-3 induced a modest stimulation of eosinophil production compared to IL-5. In contrast, IL-3 was sevenfold more effective than IL-5 in generating eosinophil progenitors (eosinophil colony-forming units (CFU-eo] from more primitive precursors present in the marrow of normal mice. Pre-incubation of marrow cells in suspension culture with IL-3, but not IL-5, increased the recovery of myeloid precursors responsive to G-CSF, GM-CSF, CSF-1, or IL-3 two- to fourfold while eosinophil progenitor cells responsive to IL-5 were increased by more than 70-fold. Similarly, pre-incubation of bone marrow cells under clonal conditions with IL-3, but not IL-5, resulted in a more than 50 fold increase in CFU-eo responsive to IL-5 over input values. Bone marro w from mice pre-treated with 5-fluorouracil is greatly depleted of progenitor cells directly responsive to IL-3 or IL-5. IL-1 which synergistically interacts with various CSF species to confer a clonogenic response by primitive stem cells present in 5-fluorouracil-treated marrow also failed to stimulate eosinophil production. A marked synergism was observed when IL-1 and IL-3 were combined in the suspension pre-culture phase with a more than sixfold recovery of CFU-eo than induced by either factor alone. Furthermore, pre-culture of 5-fluorouracil-treated marrow cells with a combination of IL-1 and IL-3 resulted in a more than 260-fold increase of CFU-eo over input numbers. These data suggest that the concatenate action of IL-1, IL-3, and IL-5 is an absolute requirement for the in vitro generation of eosinophils from primitive hemopoietic stem cells.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 1988
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1987
    In:  Proceedings of the National Academy of Sciences Vol. 84, No. 20 ( 1987-10), p. 7134-7138
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 84, No. 20 ( 1987-10), p. 7134-7138
    Abstract: The human bladder carcinoma cell line 5637 produces hematopoietic growth factors [granulocyte and granulocyte/macrophage colony-stimulating factors (G-CSF and GM-CSF)] and hemopoietin 1, which synergizes with CSFs to stimulate colony formation by primitive hematopoietic stem cells in 5-fluorouracil-treated mouse bone marrow. Molecular and functional properties of hemopoietin 1 identified it as identical to interleukin 1 alpha (IL-1 alpha). When bone marrow cells from 5-fluorouracil-treated mice were cultured in suspension for 7 days with recombinant human IL-1 alpha and/or G-CSF, it was found that the two factors synergized to enhance recovery of myelopoietic cells and colony-forming cells of both high and low proliferative potential. G-CSF alone did not sustain these populations, but the combination had greater-than-additive stimulating capacity. In vivo, 5-fluorouracil (150 mg/kg) produced profound myelosuppression and delayed neutrophil regeneration for up to 2 weeks in C3H/HeJ mice. Daily administration of recombinant human G-CSF or recombinant human IL-1 alpha accelerated recovery of stem cells, progenitor cells, and blood neutrophils by up to 4 days in 5-fluorouracil-treated C3H/HeJ and B6D2F1 mice. The combination of IL-1 alpha and G-CSF acted synergistically, reducing neutropenia and accelerating recovery of normal neutrophil numbers by up to 7 days. This was accompanied by accelerated regeneration of spleen colony-forming units and erythroid, myeloid, and megakaryocytic progenitor cells in marrow and spleen, with enhanced erythroid and granulocytic differentiation. These results indicate the possible therapeutic potential of combination therapy with IL-1 and hematopoietic growth factors such as G-CSF in the treatment of chemotherapy- or radiation-induced myelosuppression.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1987
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...