GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Marine Science Vol. 10 ( 2023-3-7)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 10 ( 2023-3-7)
    Abstract: Sexually produced juvenile scleractinian corals play a key role in the adaptation process of coral reefs, as they are considered to possess an innate plasticity and thus can adjust to changing environmental parameters within a certain range. In this study we investigated in detail the early life stages of the brooding species Leptastrea purpurea to identify, categorize and visualize the critical steps of the complex transformation process from a swimming coral larva to a sessile coral recruit and later to a coral colony. For that, we performed settlement experiments using previously known cues: cycloprodigiosin (CYPRO) and crustose coralline algae (CCA) as well as novel cues: crude extracts of Pseudoalteromonas espejiana and P. piscicida to identify a general, cue-independent settlement pathway. We monitored the development of L. purpurea over 12 months using bright field and fluorescence microscopy. Also we identified the fluorescence signals of L. purpurea with confocal microscopy at four crucial development steps: (A) swimming larva, (B) metamorphosing larva, (C) coral recruit and (D) adult coral. Our methodological approach allowed us to observe an ontogenetic shift of fluorescence signals which provokes the hypothesis that certain fluorescence patterns might be connected to distinct sequential functions in the early life cycle of scleractinian corals. Our observations showed great similarities to the early development of other brooding and spawning corals, making L. purpurea a prospective candidate to be used as a model organism for coral research. Furthermore, our in-depth picture series provides a robust monitoring reference for coral nurseries or field applications and demonstrates the potential of fluorescence as an indicator to instantly determine the growth stage of a developing coral recruit.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2023-03-02)
    Abstract: The global degradation of coral reefs is steadily increasing with ongoing climate change. Yet coral larvae settlement, a key mechanism of coral population rejuvenation and recovery, is largely understudied. Here, we show how the lipophilic, settlement-inducing bacterial pigment cycloprodigiosin (CYPRO) is actively harvested and subsequently enriched along the ectoderm of larvae of the scleractinian coral Leptastrea purpura . A light-dependent reaction transforms the CYPRO molecules through photolytic decomposition and provides a constant supply of hydrogen peroxide (H 2 O 2 ), leading to attachment on the substrate and metamorphosis into a coral recruit. Micromolar concentrations of H 2 O 2 in seawater also resulted in rapid metamorphosis, but without prior larval attachment. We propose that the morphogen CYPRO is responsible for initiating attachment while simultaneously acting as a molecular generator for the comprehensive metamorphosis of pelagic larvae. Ultimately, our approach opens a novel mechanistic dimension to the study of chemical signaling in coral settlement and provides unprecedented insights into the role of infochemicals in cross-kingdom interactions.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Marine Drugs, MDPI AG, Vol. 20, No. 1 ( 2022-01-06), p. 54-
    Abstract: Melanin is a widely distributed and striking dark-colored pigment produced by countless living organisms. Although a wide range of bioactivities have been recognized, there are still major constraints in using melanin for biotechnological applications such as its fragmentary known chemical structure and its insolubility in inorganic and organic solvents. In this study, a bacterial culture of Streptomyces cavourensis SV 21 produced two distinct forms of melanin: (1) a particulate, insoluble form as well as (2) a rarely observed water-soluble form. The here presented novel, acid-free purification protocol of purified particulate melanin (PPM) and purified dissolved melanin (PDM) represents the basis for an in-depth comparison of their physicochemical and biological properties, which were compared to the traditional acid-based precipitation of melanin (AM) and to a synthetic melanin standard (SM). Our data show that the differences in solubility between PDM and PPM in aqueous solutions may be a result of different adjoining cation species, since the soluble PDM polymer is largely composed of Mg2+ ions and the insoluble PPM is dominated by Ca2+ ions. Furthermore, AM shared most properties with SM, which is likely attributed to a similar, acid-based production protocol. The here presented gentler approach of purifying melanin facilitates a new perspective of an intact form of soluble and insoluble melanin that is less chemical altered and thus closer to its original biological form.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Coral Reefs, Springer Science and Business Media LLC, Vol. 40, No. 2 ( 2021-04), p. 381-394
    Abstract: Microorganisms have been reported to induce settlement in various marine invertebrate larvae but their specificity of inductive capacities for the settlement of coral larvae remains poorly understood. In this study, we isolated 56 microbial strains from the crustose coralline alga (CCA) Hydrolithon reinboldii using five different media either with or without additional antibiotics and/or spiked CCA extract. We tested the isolates for their potential to induce settlement behavior in larvae of the brooding scleractinian coral Leptastrea purpurea . From these 56 CCA-associated microbial strains, we identified six bacterial classes and 18 families. The culturable bacterial community associated with H. reinboldii was dominated by Gammaproteobacteria, Actinobacteria, and Alphaproteobacteria while the Illumina MiSeq analysis showed that the culture-independent bacterial community was dominated by Gammaproteobacteria, Alphaproteobacteria, and Flavobacteria. Furthermore, we found no correlation between inductive settlement capacities and phylogenetic relationships. Instead, settlement behavior of L. purpurea larvae was induced by specific isolated species. Strains #1792 ( Pseudovibrio denitrificans ), #1678 ( Acinetobacter pittii ), #1633 ( Pseudoalteromonas phenolica ), #1772 (Marine bacterium LMG1), #1721 ( Microbulbifer variabilis ), and #1783 ( Pseudoalteromonas rubra ) induced settlement behavior in coral larvae at mostly high and significant levels (≥ 40%) but the remaining isolates strongly varied in their activity. Multispecies biofilms consisting of four strains (#1792, #1678, #1633, and #1721) were observed to synergistically increase settlement behavior levels ( 〉  90%); however, the addition of #1772 to the multispecies biofilms negatively affected coral larvae and resulted in a total loss of inducing activity. The findings provide new insights into the role of bacteria in the settlement process of scleractinian corals and may help to identify the true nature of bacteria-derived morphogenic cues.
    Type of Medium: Online Resource
    ISSN: 0722-4028 , 1432-0975
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 9047-5
    detail.hit.zdb_id: 1472576-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-10-29)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-10-29)
    Abstract: The survival of coral reefs largely depends among other factors on the recruitment of a new generation of coral individuals that are more adapted to a rapidly changing climate and other anthropogenic stressors (e.g., pollution, sedimentation). Therefore, a better understanding of the coral settlement process, the molecules involved as well as crucial environmental drivers that control settlement success are needed. In this study, we identified a novel settlement inducer for the brooding scleractinian coral Leptastrea purpurea and highlight the importance of light for the settlement process. Crude extract of the red-pigmented bacterium Pseudoalteromonas rubra reliably triggered attachment and metamorphosis in L. purpurea larvae in less than 24 h. Prodigiosin (II) and the two derivatives, cycloprodigiosin (I) and 2-methyl-3-hexyl prodiginine (III) were isolated and structurally elucidated from the crude extract of P. rubra. We demonstrated that the photosensitive pigment cycloprodigiosin (I) was the responsible compound for attachment and metamorphosis in L. purpurea larvae. Under the tested light regimes (i.e., darkness, constant light and a dark-light alternation), cycloprodigiosin (I) triggered approximately 90% settlement at a concentration of 0.2 μg mL –1 under a 12 h alternating dark-light cycle, mimicking the light-flooded coral reef environment. Our findings enable for the first time a mechanistic understanding of the light-dependent larva to polyp transformation by discovering the novel bacterial settlement cue cycloprodigiosin and its photosensitivity as a determining factor for coral settlement.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...