GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mizutani, Tetsuya  (2)
  • 2005-2009  (2)
Material
Publisher
Language
Years
  • 2005-2009  (2)
Year
  • 1
    In: Endocrinology, The Endocrine Society, Vol. 146, No. 8 ( 2005-08-01), p. 3379-3386
    Abstract: Betaglycan (TGFβ type III receptor) was recently identified as a coreceptor to enhance the binding of inhibin A to activin type II receptor. This inhibin/betaglycan/activin type II receptor complex prevents activins from binding to their own receptors. The present study was undertaken to identify the expression and the regulation of the betaglycan gene in cultured rat granulosa cells. Northern blot analysis indicated betaglycan mRNA transcript of approximately 6.4 kbp. The treatment of the cells with FSH increased the betaglycan mRNA level, and a concurrent treatment with estradiol brought a significant increase in betaglycan mRNA. The protein kinase A activator, 8-bromoadenosine-cAMP, also increased the expression of its mRNA. Furthermore, betaglycan mRNA was induced additively by estradiol, which was blocked by estrogen receptor antagonists [ICI 182780, (R, R)-cis-diethyltetrahydro-2,8-chrysenediol]. In the luciferase assay, FSH altered the promoter activity of betaglycan. Moreover, when FSH plus estradiol was added to the granulosa cells, a significant increase in the half-life of betaglycan mRNA transcript was seen. In summary, FSH and estradiol increased betaglycan mRNA expression, most possibly through the protein kinase A pathway and the estrogen receptor-β. The increase of betaglycan mRNA was due t o an increase in transcription and altered mRNA stability. In ovarian regulatory function, the expression of betaglycan may involve the functional antagonism of inhibin A in activin signal transduction.
    Type of Medium: Online Resource
    ISSN: 0013-7227 , 1945-7170
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2005
    detail.hit.zdb_id: 2011695-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Endocrinology, The Endocrine Society, Vol. 149, No. 4 ( 2008-04-01), p. 1524-1533
    Abstract: Estrogen has been considered to enhance FSH actions in the ovary, including the induction of the LH receptor (LHR). In this study, we elucidated the mechanism underlying the effect of estrogen on the induction of LHR by FSH in rat granulosa cells. Estradiol clearly enhanced the FSH-induced LHR mRNA increase in a time- and dose-dependent manner, with a maximum increase of approximately 3.5-fold at 72 h, compared with the level of LHR mRNA solely induced by FSH. We then investigated whether the effect of estrogen on LHR mRNA was due to increased transcription and/or altered mRNA stability. A luciferase assay with the plasmid containing the LHR 5′-flanking region did not show that estradiol increased the promoter activity induced by FSH. In contrast, the decay curves for LHR mRNA showed a significant increase in half-life with FSH and estradiol, suggesting that the increased stability of LHR mRNA is at least responsible for the regulation of LHR mRNA by estrogen. Recently mevalonate kinase (Mvk) was identified as a trans-factor that binds to LHR mRNA and alters LHR mRNA stability in the ovary. We found that estradiol, with FSH, decreased Mvk mRNA levels in rat granulosa cell culture, resulting in up-regulation of LHR mRNA that was inversely correlated to Mvk mRNA expression. Furthermore, the augmentation of FSH-induced LHR expression in the presence of estrogen was erased with the overexpression of Mvk by transient transfection. Taken together, these data indicate that LHR mRNA is up-regulated due to increased stability when estrogen negatively controls Mvk.
    Type of Medium: Online Resource
    ISSN: 0013-7227 , 1945-7170
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2008
    detail.hit.zdb_id: 2011695-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...