GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Leukemia, Springer Science and Business Media LLC, Vol. 33, No. 3 ( 2019-3), p. 612-624
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Leukemia, Springer Science and Business Media LLC, Vol. 33, No. 12 ( 2019-12), p. 2867-2883
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1425-1425
    Abstract: Introduction Clinical outcome of relapsed pediatric B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) remains poor, although survival rate for children with BCP-ALL has greatly increased over time and is now reached 90%. To clarify the molecular pathogenesis of relapsed ALL may provide novel prognostic markers and therapeutic targets. Some genome-wide analyses for specific patients group with poor prognosis, such as early-relapsed patients and Ph- or BCR-ABL-like patients, were reported. They described important insights to understand genetic background of poor prognosis. However, the majority of relapsed cases did not have any poor prognostic marker, and the molecular mechanisms of relapse in these cases still remained unclear. Therefore we performed whole exome sequencing (WES) to describe clonal evolution in 21 relapsed pediatric BCP-ALL patients. Our cohort included various cases whose time to relapse from diagnosis were between 6 months to over 10 years. We also analyzed the clonality of leukemia cells using immunoglobulin (Ig) and T-cell receptor (TCR) rearrangements. Patients and Methods Genomic DNA was isolated from 21 cases whose median time to relapse was 33 months. Somatic mutations including SNVs (single nucleotide variants), insertions / deletions and CNVs (copy number variants) were detected by WES using Agilent SureSelect and illumine HiSeq systems. To evaluate accurate VAF (valiant allele frequency), targeted deep sequencing was performed in candidate somatic mutations. The clonality analysis of leukemia cells was performed by standard PCR methods using Ig and TCR rearrangements. Results WES was performed in samples obtained at diagnosis, remission and relapse from 21 pediatric BCP-ALL patients. Tumor specific mutations had been identified by WES. Three of 21 were hypermutated with over 150 somatic mutations at relapse. Mutation of DNA mismatch repair gene, MSH3, was detected in 2 of them. Except for these hypermutated cases, the median number of somatic mutations detected at relapsed phase was 22 (range 8 to 53), which was higher than that at diagnosis (median 16, range 6 to 31). Sixteen recurrently mutated genes were identified in 21 cases by WES. Some known leukemia associated genes were detected, including KRAS and WHSC1 observed only at diagnosis and IKZF1 and CREBBP observed at relapse. Then we compared VAFs of these mutations between at diagnosis and relapse to solve the clonal architectures over time. Three patterns of clonal evolution were estimated from VAFs using targeted deep sequencing; (i) In 7 cases, all mutations described at diagnosis were shared at relapse, suggesting that relapse clone derived from predominant clone at diagnosis with additional mutations in these cases. (ii) In other 13 cases, most of mutations in predominant clone at diagnosis were not detected at relapse except for some shared mutations at diagnosis and relapse, indicating that relapsed clone occurred from founder clone existing as subclone at diagnosis. (iii) In one very late-relapsed case, there were no shared mutations at diagnosis and relapse. According to clonality analysis of Ig and TCR, none of rearrangements identified at diagnosis were conserved at relapse in this case. On the other hand, most rearrangement at diagnosis were conserved at relapse in other 20 cases except one patient who relapsed in 10 years after diagnosis. Relapse from predominant clone at diagnosis were observed in only one out of 8 late-relapsed cases ( 〉 36 months), whereas a half of the early-relapsed showed this clonal evolution pattern. The number of shared mutations between diagnosis and relapse was very limited in very late-relapsed cases over 10 years. Discussion Our study suggests that the clonal evolution pattern differs according to the time to relapse. In a half of early-relapsed cases, relapsed clone derived from major clone at diagnosis with additional mutations, and clonal selection of resistant clones occurred during treatment. Meanwhile, in late-relapsed cases, relapse was frequently associated with clonal evolution from minor subclone with some conserved mutations and same Ig/TCR rearrangements. The founder clone should be remained dormant for a long period until additional mutations lead to relapse. Towards a better understanding of clonal evolution in ALL, our study will shed light on the early prediction of relapse risk and new treatment strategies for relapsed ALL. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 4112-4112
    Abstract: Introduction Primary central nervous system lymphoma (PCNSL) is a rare subtype of non-Hodgkin's lymphoma. Although most cases (~95%) show histology of diffuse large B-cell lymphomas (DLBCLs), PCNSL shows very different biological and clinical characteristics from systemic DLBCL. Nevertheless, our knowledge about the molecular pathogenesis of PCNSL and genetic differences between both lymphomas are still incomplete. Method To obtain a comprehensive view of the genetic alterations, including mutations in non-coding regions as well as structural variants (SVs), we performed whole-genome sequencing (WGS) of 22 PCNSL cases. Subsequently, to unravel the genetic differences between PCNSL and systemic DLBCL, we re-analyzed WGS data from systemic DLBCL cases (N = 47) generated by the Cancer Genome Atlas Network (TCGA) and Cancer Genome Characterization Initiative (CGCI) using our in-house pipeline. The mean depth of WGS for tumor samples were 49X and 37X for PCNSL and DLBCL cases, respectively. Whole-exome sequencing (WES) was also performed for an additional 37 PCNSL cases to reliably capture driver alterations and also to analyze mutational signatures in PCNSL, which were compared to those obtained from the WES data for DLBCL from TCGA (N = 49). Results WGS identified 10.5 and 5.6 mutations per mega-base on average in PCNSL and DLBCL, respectively. We first explored the density of somatic mutations and identified 64 and 33 genomic loci showing significantly high mutation densities in PCNSL and DLBCL, respectively. In PCNSL, most of these loci corresponded to known targets of somatic hypermutations (SHMs) induced by activation-induced cytidine deaminase (AID), including those for IG genes (IGK, IGH and IGL), BCL6, and PIM1, as well as those for known driver genes, such as MYD88 and CD79B. Although most of the hypermutated regions were overlapped between PCNSL and DLBCL, some regions were differentially affected by hypermutations between both lymphoma types. For example, BCL2 and SGK1 loci were frequently affected by SHMs in germinal center B-cell (GCB) DLBCL, while not in PCNSL. In terms of non-coding driver mutations, we identified frequent mutations in a PAX5 enhancer region in 8/22 (36%) of PCNSL and 18/47 (38%) of DLBCL cases. SVs were common in both lymphoma types, where 104 (PCNSL) and 57 (DLBCL) SVs were detected per sample. SV clusters were identified in 34 (PCNSL) and 13 (DLBCL) regions, of which several clusters were commonly seen in both PCNSL and DLBCL, and included IG loci, BCL6, FHIT, TOX and CDKN2A. In PCNSL, SVs were clustered within the loci for known targets of SHMs, such as BCL6, BTG2 and PIM1. As was the case with somatic mutations, the SV cluster corresponding to BCL2 was only seen in DLBCL. We then analyzed these clustered breakpoints for their proximity to known sequence motifs targeted by AID (CpG and WGCW). Breakpoints of SVs found in the targets of SHMs, including PIM1, BCL6, BTG2 and BCL2, showed an enrichment at or near the CpG, supporting the involvement of AID in the generation of these SVs. By analyzing these SV clusters, we identified several novel driver genes in PCNSL. For example, WGS and WES identified an enrichment of breakpoints of deletions (7/22) and loss-of-function mutations (6/37) in GRB2, strongly indicating its tumor suppressor role in PCNSL. We also analyzed pentanucleotide signatures of mutations in coding sequences detected by WES of PCNSL and DLBCL, taking into consideration the two adjacent bases 3' and 5' of the substitutions as well as transcription strand biases. Two predominant mutational signatures were identified in PCNSL: the AID signature characterized by C 〉 T mutations within the WRCY motif targeted by SHMs and the age-related signature involving C 〉 T transition at CpG dinucleotides. For DLBCL, an additional signature (signature 17 according to Alexandrov et al.) was detected as well, which had been reported in DLBCL with an unknown mechanistic basis. Conclusions Comprehensive genomic analyses of a large cohort of PCNSL and DLBCL cases have revealed the major targets of somatic mutations and SVs, including novel driver genes. In both PCNSL and systemic DLBCL, an enhanced AID activity is thought to be associated with generation of both SHMs and SVs, although the activity and targets of AID seem to substantially differ between both lymphoma types, suggesting distinct pathogenesis therein. Disclosures Kataoka: Boehringer Ingelheim: Honoraria; Yakult: Honoraria; Kyowa Hakko Kirin: Honoraria. Ogawa:Takeda Pharmaceuticals: Consultancy, Research Funding; Kan research institute: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 912-912
    Abstract: Introduction B-progenitor acute lymphoblastic leukemia (B-ALLs) accounts for 85% of pediatric ALL and categorized into several molecular subgroups according to their ploidy and recurrent translocations, such as ETV6-RUNX1, TCF3-PBX1, BCR-ABL1, and MLL-rearrangements. In addition, recent genetic studies using high-throughput sequencing have disclosed landscapes of gene alterations in each subgroup, however, their clinical relevance have not fully been investigated in a large cohort of B-ALL patients who are uniformly treated and enrolled in an unbiased manner. Methods We enrolled a total of 515 pediatric B-ALL patients, who had been uniformly treated according to the Japan Association of Childhood Leukemia Study (JACLS) ALL-02 protocol between 2002 and 2008. These patients were categorized into three risk groups, including standard-, high-, and extremely high-risk. Infantile ALL as well as BCR-ABL1-positive and Down syndrome-associated cases were excluded. A total of 158 known or putative driver genes in pediatric ALL were analyzed for somatic mutations by targeted-capture sequencing. IgH rearrangements were captured using 662 baits tiling the entire IgH enhancer locus. Finally, an additional 1205 baits was also designed to enable sequencing-based genome-wide copy number detection. Results The median age at diagnosis and observation period were 5.2 (1-18.5) and 4.2 (1.8-9) years, respectively. Sixty-six of the 515 patients (13%) had relapsed diseases and 47 patients (9%) had been died. Real-time RT-PCR and conventional cytogenetic analyses revealed subgroup-defining genetic lesions in 368/515 (71%) patients: 117 (23%) cases with ETV6-RUNX1, 48 (9%) with TCF3-PBX1, 13 (3%) with MLL rearrangements, together with those with hyper- (169 [33%]), and hypo- (6 [1%] ) diploid. Remaining 162 patients (31%) had none of these abnormalities. The mean depth of the targeted sequencing was 569× across the entire cohort. In total, 823 driver mutations (median 1 per patient, range 0-7) and 954 focal deletions (median 2 per patient, range 0-13) were detected in 483 patients (92%). Among these, most frequently detected were mutations/deletions in CDKN2A (24%), ETV6 (21%), NRAS (18%), KRAS (18%), and PAX5 (15%). IgH-rearrangements were detected in 51 patients, including IGH-DUX4 (26 [5.0%]), IGH-EPOR (3 [0.6%] ) and IGH-CRLF2(2 [0.3%]). Genetic alterations were enriched in several functional pathways, of which most frequent was epigenetic regulation (53%), followed by B-cell development (47%), RAS signaling (46%) and cell cycle (40%). A number of novel recurrent genetic lesions were also identified, including those in DOT1L and PHF6. DOT1L encode an H3K79 methyltransferase and was inactivated by frameshift/nonsense mutations and/or deletions in 19 cases. Although frequently found in T-ALL, mutations of PHF6 had not previously been reported in B-ALL but were detected in 14 cases in the current cohort and strongly associated with TCF3-PBX1 translocation. Significant positive correlations were also demonstrated for an additional 10 combinations of common genetic lesions, suggesting functional links between these combinations. Thus, ERG deletions were highly associated with IGH-DUX4 rearrangement, while mutations in KRAS, NRAS, and CREBBP were significantly enriched in hyperdiploid cases. ETV6-RUNX1 fusion also showed positive correlations with alterations in ETV6, CDKN1B, ATF7IP, VPREB1, BTG1, and WHSC1. Furthermore, mutually exclusive relationship between ETV6-RUNX1 translocationsand FLT3mutations were also identified. Finally, we analyzed the prognostic impact of driver mutations. In multivariate analysis of the entire cohort, 4 genetic alterations were significantly associated with poor prognosis (HR [95%CI]): IKZF1 mutations/deletions (2.6 [1.5−4.8] ), EBF1 deletions (3.0 [1.4−6.5]), KDM6A mutations/deletions (2.8 [1.2−6.5] ), and TP53 mutations (2.7 [1.2−5.9]). Additional factors (q 〈 0.1) were identified in subgroup analyses, including alterations in ETV6 (5.4 [1.2−24]), CDKN1B (7.4 [1.6−33] ) and CDKN2A (4.2 [1.4−12]) in ETV6-RUNX1 ALL, KMT2D (5.9 [1.3−26] ) in TCF3-PBX1 ALLand TP53 (38 [4.1−364]) in IGH-DUX4ALL. Conclusions We revealed the landscape of genetic lesions in pediatric B-ALL including novel targets of recurrent mutations with clinical relevance of common genetic lesions. Our results should help in the better stratification of patients. Disclosures Ogawa: Kan research institute: Consultancy, Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 129, No. 17 ( 2017-04-27), p. 2347-2358
    Abstract: TP53 and RAS-pathway mutations predict very poor survival, when seen with CK and MDS/MPNs, respectively. For patients with mutated TP53 or CK alone, long-term survival could be obtained with stem cell transplantation.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 2927-2927
    Abstract: Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of lymphoproliferative disorders arising from mature T-cells. Among them, PTCL-not otherwise specified (PTCL-NOS) is a diagnosis of exclusion, comprising the largest fraction of PTCL with a diverse underlying pathogenesis. Recently, the concept of nodal T-cell lymphomas with T-follicular helper (TFH) phenotype, including angioimmunoblastic T-cell lymphoma (AITL) and PTCL-NOS that manifests a TFH phenotype, has been proposed, a distinguishing feature of which is the high frequency of TET2, IDH2, DNMT3A, and RHOA(G17V) mutations. Although recent large-scale genetic studies have uncovered mutational landscapes of several other subtypes of PTCLs, such as cutaneous T-cell lymphoma and adult T-cell leukemia/lymphoma (ATL), the entire picture of somatic alterations in PTCL-NOS still remains elusive. In addition, their similarities and differences among various histological subtypes in PTCLs have not been fully elucidated. To address this issue, we initially analyzed our and publicly available whole-exome/genome as well as transcriptome sequencing data from PTCL-NOS and other related PTCLs. Then, we carried out an extensive investigation of somatic mutations and structural variations (SVs) in PTCL-NOS using targeted-capture sequencing of 118 PTCL-NOS samples. Consistent with previous reports, TET2 (35%) was the most frequently mutated gene in PTCL-NOS with the majority (78%) affected by multiple mutations, followed by RHOA (25%), TP53 (16%), KMT2C (12%), PLCG1 (12%), and HLA-B (11%). Besides them, a considerable proportion of patients harbored mutations in components of T-cell receptor (TCR) /NF-κB pathway (such as PRKCB, CARD11, IRF4, and PRDM1), other signal transduction molecules (STAT3, NOTCH1, and SOCS1), chemokine receptors (CCR4 and CCR7), epigenetic modifiers (CREBBP, KDM6A, IDH2, and DNMT3A), transcriptional regulators (GATA3 and TBL1XR1), and molecules associated with immune evasion (HLA-A, HLA-B, FAS, B2M, and CD58). In addition to deteriorating SVs involving frequently affected genes (TP53, FAS, GATA3, and TBL1XR1), we discovered several genes almost exclusively affected by SVs, including TP73, IKZF2, and NFKB2, and CD274. Novel targets of recurrent mutation were also identified, including PDCD1, YTHDF2, and LRP1B, which were frequently targeted by nonsense and frameshift mutations distributed throughout the entire genes. Among them, PDCD1encodes PD-1 receptor transmitting an inhibitory signal from PD-L1 and PD-L2 ligands in T cells, and its loss of function seems to enable tumor cells to escape from the suppression by this negative signal. Although the roles of YTHDF2, a reader protein of N6-methyladenosine, and LRP1B, a member of the low density lipoprotein receptor family, in T cells are not immediately apparent, these findings shed light on a new biological function of these genes. Next, we investigated the co-existence relationship between frequently altered genes in PTCL-NOS. Interestingly, mutations characteristic of TFH lymphomas (TET2, RHOA, IDH2, and DNMT3A) tended to co-occur in a subset of PTCL-NOS cases, whereas they were almost mutually exclusive with mutations in TP53 and TCR/NF-κB pathway genes. This observation reveals the molecular distinction between TFH and non-TFH lymphomas in PTCL-NOS: the former is similar to AITL, although TET2 mutations did not show higher allelic burden than RHOA and IDH2mutations. In contrast, the latter is at least partly characterized by the genetic alterations shared with ATL. In summary, our findings illuminate the landscape of somatic alterations in PTCL-NOS and provide a novel insight into their genetic and molecular heterogeneity, which would help us to exploit a new therapeutic strategy to combat this disease. Disclosures Ohshima: CHUGAI PHARMACEUTICAL CO.,LTD.: Research Funding, Speakers Bureau; Kyowa Hakko Kirin Co., Ltd.: Research Funding, Speakers Bureau. Ogawa:Kan research institute: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding. Kataoka:Kyowa Hakko Kirin: Honoraria; Yakult: Honoraria; Boehringer Ingelheim: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 2390-2390
    Abstract: Introduction Due to the considerable success of cancer immunotherapy for leukemia, the tumor immune environment (TIE) has become a focus of intense research; however, there are few reports on the dynamics of the TIE in leukemia, especially in bone marrow (BM), the primary site of leukemia. Mass cytometry, which allows high-dimensional analysis with single-cell resolution, is a powerful tool for the characterization of the TIE, and enables us to examine pediatric BM samples containing only a few numbers of immune cells. Methods Primary and recurrent BM samples were collected serially from pediatric patients with BCP-ALL at Kyoto University Hospital from 2006 to 2013. Mononuclear cells were isolated by density centrifugation and viably preserved until they were used. We examined the TIE of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) by analyzing serial BM samples from patients in primary and recurrent disease phases by mass cytometry, using 39 immunophenotype markers, and transcriptome analysis. Results and Discussion The proportion of BCP-ALL cells in the samples was 87.3-97.8% (mean: 94.0%) at onset, and 81.3-98.8% (mean: 92.2%) at relapse. High-dimensional single-cell analysis by mass cytometry elucidated a dynamic shift of T cells from naïve to effector subsets, and clarified that the TIE during relapse comprised a T helper 1 (Th1)-polarized immune profile, together with the increase of effector regulatory T cells (Tregs). Th1 cells are typically known as supporters of cytotoxic T lymphocytes which would eliminate leukemia cells and work against relapse, but recently, it is reported that Th1 cells directly support ALL proliferation in vitro (Traxel et al. Oncogene. 2019; 38:2420-2431), and that the concentrations of pro-inflammatory cytokines and Th1 cytokines (IFN-γ and IL-12) were elevated in patients with ALL, which could create favorable conditions for ALL (Perez-Figueroa et al. Oncol Rep. 2016; 35: 2699-2706, Vilchis-Ordonez et al. Biomed Res Int. 2015; 2015: 386165). Therefore, there is a possibility that the Th1-polarized immune profile would work in favor of leukemia survival for relapse. Furthermore, Gene set enrichment analysis based on RNA expression identified the enrichment of six immune-related pathways were enriched at the time of relapse; chemokine activity, chemokine production, complement activation, positive regulation of cytokine production involved in immune response, positive regulation of lymphocyte chemotaxis, and positive regulation of lymphocyte migration. These expression signatures suggest that BCP-ALL cells attract lymphocytes, and upregulate immune activities at relapse. Conclusion In summary, a TIE characterized by a Th1-polarized immune profile, with the increase of effector Tregs, may be involved in the pathophysiology of recurrent ALL, and BCP-ALL cells at relapse were enriched with gene expressions related to lymphocyte attraction and activities. This information could contribute to the development of effective immunotherapeutic approaches against BCP-ALL relapse. Disclosures Ogawa: Eisai Co., Ltd.: Research Funding; Kan Research Laboratory, Inc.: Consultancy, Research Funding; Ashahi Genomics: Current holder of individual stocks in a privately-held company; Dainippon-Sumitomo Pharmaceutical, Inc.: Research Funding; Otsuka Pharmaceutical Co., Ltd.: Research Funding; ChordiaTherapeutics, Inc.: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 131, No. 16 ( 2018-04-19), p. 1846-1857
    Abstract: tMNs after ASCT originate from HSCs bearing (pre-)tMN mutations that are present years before disease onset. Post-ASCT treatment can influence selection and outgrowth of (pre)leukemic clones.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2797-2797
    Abstract: Background: Acute myeloid leukemia (AML) is a genetically and clinically heterogeneous disease, characterized by expansion of undifferentiated myeloid precursor cells. The outcome for AML has improved through optimal treatment protocols, new drugs, and better supportive care; however, relapse remains common and patients with relapsed AML have poor prognosis. Recent genome-wide analyses revealed several recurrently mutated genes in AML, however, few of these driver mutations have been developed as therapeutic targets to date. In AML, t(8;21) and MLL (KMT2A) rearrangements are among the most frequent chromosomal abnormalities; however, knowledge of the genetic landscape is limited. Patients and Methods: The AML-05 study is a Japanese nationwide multi-institutional study of children (age 〈 18 years old) with de novo AML, conducted by the Japanese Pediatric Leukemia/Lymphoma Study Group (JPLSG). The trial was registered with the UMIN Clinical Trials Registry (UMIN-CTR; http://www.umin.ac.jp/ctr/index.htm; number UMIN000000511) and conducted in accordance with the principles set down in the Declaration of Helsinki, and approved by the Ethics Committees of all participating institutions. All patients, or their parents / guardians, provided written informed consent. For whole-exome sequencing (WES), whole-exome capture was accomplished by liquid phase hybridization of sonicated genomic DNA using a bait cRNA library (SureSelect Human ALL Exon V5 or V5 Inc RNA 5 kit), following the manufacturer's protocol. Massively parallel sequencing of the captured targets was performed using a HiSeq 2000/2500 (Illumina) with the paired-end 126-133 bp read option. For targeted sequencing, target enrichment was performed using a SureSelect custom kit (Agilent) designed to capture all coding exons of the 338 genes. Similarly, CCND1, CCND2, and CCND3 were also captured and sequenced in t(8;21) AML samples. For cell cycle analysis, cell lines were treated with DMSO, palbociclib (500 nM), or abemaciclib (500 nM) for 24 h. Then, cells were stained with propidium iodide and analyzed using a FACS Canto II flow cytometer (BD Biosciences). Results and Discussion: First, we analyzed paired AML tumor and germline samples from nine pediatric MLL-rearranged AML patients by WES. In total, 52 mutations (mean, 5.8 mutations/patient) were identified, including known mutational targets in AML, such as FLT3, BRAF, SETD2, BCORL1, and WT1. Moreover, novel CCND3 mutation was detected in one patient. Next, we analyzed 56 samples from patients with pediatric MLL-rearranged AML enrolled in the JPLSG AML-05 study, using targeted sequencing. We selected 338 genes, among which were previously reported and putative driver genes, including CCND3, for targeted sequencing. We identified eight mutations in CCND3 in five pediatric MLL-rearranged AML patients (8.9%). All mutations were clustered in the PEST domain. Four of the eight mutations were R271fs, which is a known hot-spot mutation in lymphoid malignancies. Mutations of the other D-type cyclins (CCND1, CCND2) have been reported in t(8;21) AML (Leukemia, 2017); therefore, we also searched for mutations in CCND1, CCND2, and CCND3 by targeted sequencing of samples from pediatric t(8;21) AML patients (n=105). CCND1 (n=3, 2.9%) and CCND2 (n=8, 7.6%) mutations were detected; however, no mutations of CCND3 were detected. By contrast, there were no mutations of CCND1 or CCND2 in MLL-rearranged AML (n=56), suggesting that mutations of D-type cyclins exhibit a subtype-specific pattern in AML. A recent study demonstrated that genomic aberrations that activate D-type cyclins are associated with enhanced sensitivity to the CDK4/6 inhibitor (Cancer Cell, 2017), therefore, we also examined the effects of CDK4/6 inhibitors (abemaciclib and palbociclib) on two t(8;21) AML cell lines (Kasumi-1 and SKNO-1) and five MLL-rearrangement AML cell lines (ML-2, MV4-11, MOLM-13, THP-1, and NOMO-1) were analyzed. All cell lines described above exhibited impaired proliferation after treatment with CDK4/6 inhibitors. Furthermore, treatment of these cell lines with CDK4/6 inhibitors resulted in detection of lower frequencies of S/G2/M phase cells by flow cytometry, suggesting that cells were arrested in G1 phase via CDK4/6 inhibition. These data provide further insights into the genetic basis of, and potential therapeutic strategies in t(8;21) and MLL-rearranged acute myeloid leukemia. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...