GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Japanese Journal of Applied Physics, IOP Publishing, Vol. 43, No. 4S ( 2004-04-01), p. 1925-
    Abstract: A thermally annealed Ni/Pt/Au metal structure was employed as the gate contacts of AlGaN/GaN high electron mobility transistors (HEMTs), and their DC and RF performances were investigated. This gate structure markedly improved the Schottky characteristics such as the Schottky barrier height and leakage current. Regarding the DC characteristics, the maximum drain current and off-state breakdown voltage were increased from 0.78 A/mm ( V g =1 V) to 0.90 A/mm ( V g =3 V) due to the improved applicability of the gate voltage and from 108 V to 178 V, respectively, by annealing the gate metals. In addition, a reduction of the transconductance was not observed. Furthermore, even after the deposition of SiN x passivation film, the off-state breakdown voltage remained at a relatively high value of 120 V. Regarding the RF characteristics, the cut-off frequency and maximum oscillation frequency were also improved from 10.3 GHz to 13.5 GHz and from 27.5 GHz to 35.1 GHz, respectively, by annealing the gate metals whose gate length was 1 µm.
    Type of Medium: Online Resource
    ISSN: 0021-4922 , 1347-4065
    RVK:
    RVK:
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2004
    detail.hit.zdb_id: 218223-3
    detail.hit.zdb_id: 797294-5
    detail.hit.zdb_id: 2006801-3
    detail.hit.zdb_id: 797295-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    IOP Publishing ; 2022
    In:  Japanese Journal of Applied Physics Vol. 61, No. SC ( 2022-05-01), p. SC1015-
    In: Japanese Journal of Applied Physics, IOP Publishing, Vol. 61, No. SC ( 2022-05-01), p. SC1015-
    Abstract: An extrinsic electron induced by a dielectric (EID) AlGaN/GaN MOS high-electron-mobility transistor (HEMT) on Si substrate was designed and investigated. The EID structure with SiO 2 deposition and subsequent high-temperature annealing, which induces two-dimensional electron gases (2DEGs) on fully depleted AlGaN/GaN hetero-epitaxial layers with thin AlGaN barrier layer, was applied to access and drift regions in the HEMT. The fabricated HEMT exhibited enhancement-mode operation with a specific on-resistance of 7.6 mΩ cm 2 and a breakdown voltage of over 1 kV. In addition, electron state analysis using hard X-ray photoelectron spectroscopy revealed that changes in the chemical states of Al and energy level lowering at the SiO 2 /AlGaN interface affect the induction of 2DEG in the EID structure. The proposed HEMTs should become a strong candidate for highly reliable high-power switching devices due to the damage-less fabrication without dry etching or fluorine plasma exposure processes on the semiconductor layers.
    Type of Medium: Online Resource
    ISSN: 0021-4922 , 1347-4065
    RVK:
    RVK:
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 218223-3
    detail.hit.zdb_id: 797294-5
    detail.hit.zdb_id: 2006801-3
    detail.hit.zdb_id: 797295-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Applied Physics, AIP Publishing, Vol. 94, No. 3 ( 2003-08-01), p. 1662-1666
    Abstract: Highly resistive layers are formed by the implantation of Zn ion along the c axis of GaN and AlGaN/GaN epitaxial layers. Heavy ions such as Zn have been desirable for the formation of highly resistive layers, because ions effectively transferred their energy to the crystal atoms rather than the electrons in GaN. A sheet resistance Rs as high as 3.8×1011 Ω/sq was obtained on GaN layers after the ion implantation. Rs increased up to 2.2×1013 Ω/sq after the annealing at 500 °C for 300 s in an N2 atmosphere. The thermal activation energy Er for this sample was 0.67 eV. It was found that the experimental data in current–voltage characteristics were fitted to the equation included the Poole–Frenkel current and resistive (ohmic) current. The difference of Rs between the as-implanted and 500 °C annealed samples was due to the Poole–Frenkel current. The Poole–Frenkel current overcame the resistive one, and dominated the current mechanism in the case of the samples annealed at 200 °C or less. On the other hand, for the samples annealed at 500 °C, the current was only resistive. Both Rs and Er decreased as the annealing temperature increased above 500 °C. Furthermore this implantation method was applied to the device isolation of AlGaN/GaN high electron mobility transistors (HEMTs). The high Rs of 5.9×1011 Ω/sq was observed for AlGaN/GaN structures as well as GaN layers which were not annealed. The HEMTs with a gate length of 1 μm had a high drain current of over 1 A/mm at the gate voltage of 1 V and a pinch off voltage of −7 V without a harmful leakage current.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2003
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...