GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Metze, Patrick  (2)
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  International Journal of Computer Assisted Radiology and Surgery
    In: International Journal of Computer Assisted Radiology and Surgery, Springer Science and Business Media LLC
    Abstract: Image-guided intervention (IGI) systems have the potential to increase the efficiency in interventional cardiology but face limitations from motion. Even though motion compensation approaches have been proposed, the resulting accuracy has rarely been quantified using in vivo data. The purpose of this study is to investigate the potential benefit of motion-compensation in IGS systems. Methods Patients scheduled for left atrial appendage closure (LAAc) underwent pre- and postprocedural non-contrast-enhanced cardiac magnetic resonance imaging (CMR). According to the clinical standard, the final position of the occluder device was routinely documented using x-ray fluoroscopy (XR). The accuracy of the IGI system was assessed retrospectively based on the distance of the 3D device marker location derived from the periprocedural XR data and the respective location as identified in the postprocedural CMR data. Results The assessment of the motion-compensation depending accuracy was possible based on the patient data. With motion synchronization, the measured accuracy of the IGI system resulted similar to the estimated accuracy, with almost negligible distances of the device marker positions identified in CMR and XR. Neglection of the cardiac and/or respiratory phase significantly increased the mean distances, with respiratory motion mainly reducing the accuracy with rather low impact on the precision, whereas cardiac motion decreased the accuracy and the precision of the image guidance. Conclusions In the presented work, the accuracy of the IGI system could be assessed based on in vivo data. Motion consideration clearly showed the potential to increase the accuracy in IGI systems. Where the general decrease in accuracy in non-motion-synchronized data did not come unexpected, a clear difference between cardiac and respiratory motion-induced errors was observed for LAAc data. Since sedation and intervention location close to the large vessels likely impacts the respiratory motion contribution, an intervention-specific accuracy analysis may be useful for other interventions.
    Type of Medium: Online Resource
    ISSN: 1861-6429
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2235881-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  International Journal of Computer Assisted Radiology and Surgery
    In: International Journal of Computer Assisted Radiology and Surgery, Springer Science and Business Media LLC
    Abstract: Percutaneous closure of the left atrial appendage (LAA) reduces the risk of embolic stroke in patients with atrial fibrillation. Thereby, the optimal transseptal puncture (TSP) site differs due to the highly variable anatomical shape of the LAA, which is rarely considered in existing training models. Based on non-contrast-enhanced magnetic resonance imaging (MRI) volumes, we propose a training model for LAA closure with interchangeable and patient-specific LAA enabling LAA-specific identification of the TSP site best suited. Methods Based on patient-specific MRI data, silicone models of the LAAs were produced using a 3D-printed cast model. In addition, an MRI-derived 3D-printed base model was set up, including the right and left atrium with predefined passages in the septum, mimicking multiple TSP sites. The various silicone models and a tube mimicking venous access were connected to the base model. Empirical use of the model allowed the demonstration of its usability. Results Patient-specific silicone models of the LAA could be generated from all LAA patient MRI datasets. The influence of various combinations regarding TSP sites and LAA shapes could be demonstrated as well as the technical functionality of the occluder system. Via the attached tube mimicking the venous access, the correct handling of the deployment catheter even in case of not optimal puncture site could be practiced. Conclusion The proposed contrast-agent and radiation-free MRI-based training model for percutaneous LAA closure enables the pre-interventional assessment of the influence of the TSP site on the access of patient-specific LAA shapes. A straightforward replication of this work is measured by using clinically available imaging protocols and a widespread 3D printer technique to build the model.
    Type of Medium: Online Resource
    ISSN: 1861-6429
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2235881-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...