GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 48, No. 11 ( 2021-06-16)
    Abstract: We interpret an ensemble of airborne measurements with the GEOS‐Chem model to constrain US fossil fuel and nonfossil carbon monoxide (CO) sources Measurements reveal an approximate 30% overestimate of US fossil fuel CO emissions in the National Emissions Inventory During summer regional fossil fuel sources account for just 9%–16% of total boundary layer CO over eastern North America
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 15, No. 16 ( 2022-08-22), p. 4751-4765
    Abstract: Abstract. AirCore in situ vertical profiles sample the atmosphere from near the surface to the lower stratosphere, making them ideal for the validation of satellite tropospheric trace gas data. Here we present intercomparison results of AirCore carbon monoxide (CO) measurements with respect to retrievals from MOPITT (Measurements of Pollution In The Troposphere; version 8) and TROPOMI (TROPOspheric Monitoring Instrument), on board the NASA Terra and ESA Sentinel 5-Precursor satellites, respectively. Mean MOPITT/AirCore total column bias values and their standard deviation (0.4 ± 5.5, 1.7 ± 5.6, and 0.7 ± 6.0 for MOPITT thermal-infrared, near-infrared, and multispectral retrievals, respectively; all in %) are similar to results obtained in MOPITT/NOAA aircraft flask data comparisons from this study and from previous validation efforts. MOPITT CO retrievals are systematically validated using in situ vertical profiles from a variety of aircraft campaigns. Because most aircraft vertical profiles do not sample the troposphere's entire vertical extent, they must be extended upwards in order to be usable in validation. Here we quantify, for the first time, the error introduced in MOPITT CO validation by the use of shorter aircraft vertical profiles extended upwards by analyzing validation results of MOPITT with respect to full and truncated AirCore CO vertical profiles. Our results indicate that the error is small, affects mostly upper tropospheric retrievals (at 300 hPa: ∼ 2.6, 0.8, and 3.2 percent points for MOPITT thermal-infrared, near-infrared, and multispectral, respectively), and may have resulted in the overestimation of MOPITT retrieval biases in that region. TROPOMI can retrieve CO under both clear and cloudy conditions. The latter is achieved by quantifying interfering trace gases and parameters describing the cloud contamination of the measurements together with the CO column; then, the reference CO profiles used in the retrieval are scaled based on estimated above-cloud CO rather than on estimated total CO. We use AirCore measurements as the reference to evaluate the error introduced by this approach in cloudy TROPOMI retrievals over land after accounting for TROPOMI's vertical sensitivity to CO (relative bias and its standard deviation = 2.02 % ± 11.13 %). We also quantify the null-space error, which accounts for differences between the shape of TROPOMI reference profiles and that of AirCore measured profiles (for TROPOMI cloudy enull=0.98 % ± 2.32 %).
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 16, No. 10 ( 2023-05-30), p. 2601-2625
    Abstract: Abstract. We describe an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO2) from total column ground-based Total Carbon Column Observation Network (TCCON) observations. For CO and CO2, it has been difficult to retrieve information about their vertical distribution from spectral line shapes because of the errors in the spectroscopy and the atmospheric temperature profile that mask the effects of variations in their mixing ratio with altitude. For CO2 the challenge is especially difficult given that these variations are typically 2 % or less. Nevertheless, if sufficient accuracy can be obtained, such information would be highly valuable for evaluation of retrievals from satellites and more generally for improving the estimate of surface sources and sinks of these trace gases. We present here the Temporal Atmospheric Retrieval Determining Information from Secondary Scaling (TARDISS) retrieval algorithm. TARDISS uses several simultaneously obtained total column observations of the same gas from different absorption bands with distinctly different vertical averaging kernels. The different total column retrievals are combined in TARDISS using a Bayesian approach where the weights and temporal covariance applied to the different retrievals include additional constraints on the diurnal variation in the vertical distribution for these gases. We assume that the near-surface part of the column varies rapidly over the course of a day (from surface sources and sinks, for example) and that the upper part of the column has a larger temporal covariance over the course of a day. Using measurements from the five North American TCCON sites, we find that the retrieved lower partial column (between the surface and ∼ 800 hPa) of the CO and CO2 dry mole fractions (DMFs) have slopes of 0.999 ± 0.002 and 1.001 ± 0.003 with respect to lower column DMF from integrated in situ data measured directly from aircraft and in AirCores. The average error for our lower column CO retrieval is 1.51 ppb (∼ 2 %) while the average error for our CO2 retrieval is 5.09 ppm (∼ 1.25 %). Compared with classical line-shape-derived vertical profile retrievals, our algorithm reduces the influence of forward model errors such as imprecision in spectroscopy (line shapes and intensities) and in the instrument line shape. In addition, because TARDISS uses the existing retrieved column abundances from TCCON (which themselves are computationally much less intensive than profile retrieval algorithms), it is very fast and processes years of data in minutes. We anticipate that this approach will find broad application for use in carbon cycle science.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 18 ( 2021-09-28), p. 14385-14401
    Abstract: Abstract. Feedbacks between the climate system and the carbon cycle represent a key source of uncertainty in model projections of Earth's climate, in part due to our inability to directly measure large-scale biosphere–atmosphere carbon fluxes. In situ measurements of the CO2 mole fraction from surface flasks, towers, and aircraft are used in inverse models to infer fluxes, but measurement networks remain sparse, with limited or no coverage over large parts of the planet. Satellite retrievals of total column CO2 (XCO2), such as those from NASA's Orbiting Carbon Observatory-2 (OCO-2), can potentially provide unprecedented global information about CO2 spatiotemporal variability. However, for use in inverse modeling, data need to be extremely stable, highly precise, and unbiased to distinguish abundance changes emanating from surface fluxes from those associated with variability in weather. Systematic errors in XCO2 have been identified and, while bias correction algorithms are applied globally, inconsistencies persist at regional and smaller scales that may complicate or confound flux estimation. To evaluate XCO2 retrievals and assess potential biases, we compare OCO-2 v10 retrievals with in situ data-constrained XCO2 simulations over North America estimated using surface fluxes and boundary conditions optimized with observations that are rigorously calibrated relative to the World Meteorological Organization X2007 CO2 scale. Systematic errors in simulated atmospheric transport are independently evaluated using unassimilated aircraft and AirCore profiles. We find that the global OCO-2 v10 bias correction shifts the distribution of retrievals closer to the simulated XCO2, as intended. Comparisons between bias-corrected and simulated XCO2 reveal differences that vary seasonally. Importantly, the difference between simulations and retrievals is of the same magnitude as the imprint of recent surface flux in the total column. This work demonstrates that systematic errors in OCO-2 v10 retrievals of XCO2 over land can be large enough to confound reliable surface flux estimation and that further improvements in retrieval and bias correction techniques are essential. Finally, we show that independent observations, especially vertical profile data, such as those from the National Oceanic and Atmospheric Administration aircraft and AirCore programs are critical for evaluating errors in both satellite retrievals and carbon cycle models.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Remote Sensing, MDPI AG, Vol. 12, No. 19 ( 2020-10-06), p. 3245-
    Abstract: This paper provides an overview of the validation of National Oceanic and Atmospheric Administration (NOAA) operational retrievals of atmospheric carbon trace gas profiles, specifically carbon monoxide (CO), methane (CH4) and carbon dioxide (CO2), from the NOAA-Unique Combined Atmospheric Processing System (NUCAPS), a NOAA enterprise algorithm that retrieves atmospheric profile environmental data records (EDRs) under global non-precipitating (clear to partly cloudy) conditions. Vertical information about atmospheric trace gases is obtained from the Cross-track Infrared Sounder (CrIS), an infrared Fourier transform spectrometer that measures high resolution Earth radiance spectra from NOAA operational low earth orbit (LEO) satellites, including the Suomi National Polar-orbiting Partnership (SNPP) and follow-on Joint Polar Satellite System (JPSS) series beginning with NOAA-20. The NUCAPS CO, CH4, and CO2 profile EDRs are rigorously validated in this paper using well-established independent truth datasets, namely total column data from ground-based Total Carbon Column Observing Network (TCCON) sites, and in situ vertical profile data obtained from aircraft and balloon platforms via the NASA Atmospheric Tomography (ATom) mission and NOAA AirCore sampler, respectively. Statistical analyses using these datasets demonstrate that the NUCAPS carbon gas profile EDRs generally meet JPSS Level 1 global performance requirements, with the absolute accuracy and precision of CO 5% and 15%, respectively, in layers where CrIS has vertical sensitivity; CH4 and CO2 product accuracies are both found to be within ±1%, with precisions of ≈1.5% and ⪅0.5%, respectively, throughout the tropospheric column.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 16, No. 5 ( 2023-03-07), p. 1121-1146
    Abstract: Abstract. Optimal estimation retrievals of trace gas total columns require prior vertical profiles of the gases retrieved to drive the forward model and ensure the retrieval problem is mathematically well posed. For well-mixed gases, it is possible to derive accurate prior profiles using an algorithm that accounts for general patterns of atmospheric transport coupled with measured time series of the gases in questions. Here we describe the algorithm used to generate the prior profiles for GGG2020, a new version of the GGG retrieval that is used to analyze spectra from solar-viewing Fourier transform spectrometers, including the Total Carbon Column Observing Network (TCCON). A particular focus of this work is improving the accuracy of CO2, CH4, N2O, HF, and CO across the tropopause and into the lower stratosphere. We show that the revised priors agree well with independent in situ and space-based measurements and discuss the impact on the total column retrievals.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 2 ( 2021-01-25), p. 951-971
    Abstract: Abstract. We apply airborne measurements across three seasons (summer, winter and spring 2017–2018) in a multi-inversion framework to quantify methane emissions from the US Corn Belt and Upper Midwest, a key agricultural and wetland source region. Combing our seasonal results with prior fall values we find that wetlands are the largest regional methane source (32 %, 20 [16–23] Gg/d), while livestock (enteric/manure; 25 %, 15 [14–17] Gg/d) are the largest anthropogenic source. Natural gas/petroleum, waste/landfills, and coal mines collectively make up the remainder. Optimized fluxes improve model agreement with independent datasets within and beyond the study timeframe. Inversions reveal coherent and seasonally dependent spatial errors in the WetCHARTs ensemble mean wetland emissions, with an underestimate for the Prairie Pothole region but an overestimate for Great Lakes coastal wetlands. Wetland extent and emission temperature dependence have the largest influence on prediction accuracy; better representation of coupled soil temperature–hydrology effects is therefore needed. Our optimized regional livestock emissions agree well with the Gridded EPA estimates during spring (to within 7 %) but are ∼ 25 % higher during summer and winter. Spatial analysis further shows good top-down and bottom-up agreement for beef facilities (with mainly enteric emissions) but larger (∼ 30 %) seasonal discrepancies for dairies and hog farms (with 〉 40 % manure emissions). Findings thus support bottom-up enteric emission estimates but suggest errors for manure; we propose that the latter reflects inadequate treatment of management factors including field application. Overall, our results confirm the importance of intensive animal agriculture for regional methane emissions, implying substantial mitigation opportunities through improved management.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...