GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Society for Microbiology  (5)
  • McGee, David J.  (5)
  • 2010-2014  (5)
Materialart
Verlag/Herausgeber
  • American Society for Microbiology  (5)
Sprache
Erscheinungszeitraum
  • 2010-2014  (5)
Jahr
FID
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2011
    In:  Antimicrobial Agents and Chemotherapy Vol. 55, No. 6 ( 2011-06), p. 2897-2904
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 55, No. 6 ( 2011-06), p. 2897-2904
    Kurzfassung: The human gastric pathogen Helicobacter pylori steals host cholesterol, modifies it by glycosylation, and incorporates the glycosylated cholesterol onto its surface via a cholesterol glucosyltransferase, encoded by cgt . The impact of cholesterol on H. pylori antimicrobial resistance is unknown. H. pylori strain 26695 was cultured in Ham's F12 chemically defined medium in the presence or absence of cholesterol. The two cultures were subjected to overnight incubations with serial 2-fold dilutions of 12 antibiotics, six antifungals, and seven antimicrobial peptides (including LL-37 cathelicidin and human alpha and beta defensins). Of 25 agents tested, cholesterol-grown H. pylori cells were substantially more resistant (over 100-fold) to nine agents than were H. pylori cells grown without cholesterol. These nine agents included eight antibiotics and LL-37. H. pylori was susceptible to the antifungal drug pimaricin regardless of cholesterol presence in the culture medium. A cgt mutant retained cholesterol-dependent resistance to most antimicrobials but displayed increased susceptibility to colistin, suggesting an involvement of lipid A. Mutation of lpxE , encoding lipid A1-phosphatase, led to loss of cholesterol-dependent resistance to polymyxin B and colistin but not other antimicrobials tested. The cgt mutant was severely attenuated in gerbils, indicating that glycosylation is essential in vivo . These findings suggest that cholesterol plays a vital role in virulence and contributes to the intrinsic antibiotic resistance of H. pylori .
    Materialart: Online-Ressource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2011
    ZDB Id: 1496156-8
    SSG: 12
    SSG: 15,3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2011
    In:  Infection and Immunity Vol. 79, No. 1 ( 2011-01), p. 88-97
    In: Infection and Immunity, American Society for Microbiology, Vol. 79, No. 1 ( 2011-01), p. 88-97
    Kurzfassung: The human gastric pathogen Helicobacter pylori modifies host cholesterol via glycosylation and incorporates the glycosylated cholesterol into its membrane; however, the benefits of cholesterol to H. pylori are largely unknown. We speculated that cholesterol in the H. pylori membrane might alter the susceptibility of these organisms to membrane-disrupting antibacterial compounds. To test this hypothesis, H. pylori strains were cultured in Ham's F-12 chemically defined medium in the presence or absence of cholesterol. The two cultures were subjected to overnight incubations with serial 2-fold dilutions of 10 bile salts and four ceragenins, which are novel bile salt derivatives that mimic membrane-disrupting activity of antimicrobial peptides. H. pylori cultured with cholesterol was substantially more resistant to seven of the bile salts and three ceragenins than H. pylori cultured without cholesterol. In most cases, these cholesterol-dependent differences ranged from 2 to 7 orders of magnitude; this magnitude depended on concentration of the agent. Cholesterol is modified by glycosylation using Cgt, a cholesteryl glycosyltransferase. Surprisingly, a cgt knockout strain still maintained cholesterol-dependent resistance to bile salts and ceragenins, indicating that cholesterol modification was not involved in resistance. We then tested whether three putative, paralogous inner membrane efflux pumps, HefC, HefF, or HefI, played a role. While HefF and HefI appeared unimportant, HefC was shown to play a critical role in the resistance to bile salts and ceragenins by multiple methods in multiple strain backgrounds. Thus, both cholesterol and the putative bile salt efflux pump HefC play important roles in H. pylori resistance to bile salts and ceragenins.
    Materialart: Online-Ressource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2011
    ZDB Id: 1483247-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Infection and Immunity, American Society for Microbiology, Vol. 79, No. 8 ( 2011-08), p. 3106-3116
    Kurzfassung: Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli . An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.
    Materialart: Online-Ressource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2011
    ZDB Id: 1483247-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2010
    In:  Infection and Immunity Vol. 78, No. 5 ( 2010-05), p. 1841-1849
    In: Infection and Immunity, American Society for Microbiology, Vol. 78, No. 5 ( 2010-05), p. 1841-1849
    Kurzfassung: Helicobacter pylori chronically infects the gastric mucosa, where it can be found free in mucus, attached to cells, and intracellularly. H. pylori requires iron for growth, but the sources of iron used in vivo are unclear. In previous studies, the inability to culture H. pylori without serum made it difficult to determine which host iron sources might be used by H. pylori . Using iron-deficient, chemically defined medium, we determined that H. pylori can bind and extract iron from hemoglobin, transferrin, and lactoferrin. H. pylori can use both bovine and human versions of both lactoferrin and transferrin, contrary to previous reports. Unlike other pathogens, H. pylori preferentially binds the iron-free forms of transferrin and lactoferrin, which limits its ability to extract iron from normal serum, which is not iron saturated. This novel strategy may have evolved to permit limited growth in host tissue during persistent colonization while excessive injury or iron depletion is prevented.
    Materialart: Online-Ressource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2010
    ZDB Id: 1483247-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2013
    In:  Journal of Bacteriology Vol. 195, No. 2 ( 2013-01-15), p. 359-367
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 195, No. 2 ( 2013-01-15), p. 359-367
    Kurzfassung: The glucosylation of free cholesterol (FC) by Helicobacter pylori cells has various biological significances for the survival of this bacterium. H. pylori cells with glucosylated FC are capable of evading host immune systems, such as phagocytosis by macrophages and activation of antigen-specific T cells, and surviving in the gastric mucosal tissues for long periods. An additional role of cholesterol glucosylation in the survival of H. pylori which is distinct from the role of escaping the host immune system, however, has yet to be identified. This study demonstrated that 7-dehydrocholesterol (7dFC), an FC precursor, is a toxic compound fatal to H. pylori cells, but the cell membrane of H. pylori is capable of absorbing this toxic sterol via glucosylation. In contrast to the case with 7dFC, no toxicity to H. pylori cells was detected from the glucosylated 7dFC. In addition, cgt gene mutant H. pylori cells that cannot glucosylate cholesterols had higher susceptibility to the toxic action of 7dFC than wild-type H. pylori cells. These results indicate that the cgt gene product of H. pylori serves to detoxify the sterol fatal to this bacterium and to permit this toxic sterol as a cell membrane lipid component. In summary, this study defined a novel role of cholesterol glucosylation in H. pylori .
    Materialart: Online-Ressource
    ISSN: 0021-9193 , 1098-5530
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2013
    ZDB Id: 1481988-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...