GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Open Forum Infectious Diseases, Oxford University Press (OUP), Vol. 6, No. Supplement_2 ( 2019-10-23), p. S902-S902
    Abstract: The etiology of pneumonia is difficult to diagnose, with typical bacterial, atypical bacterial, and viral infections being the most common. However, diagnostics that discriminate these infectious etiologies are limited. We, therefore, focused on the host response to identify possible diagnostic markers and better understand these infections. However, atypical bacterial pneumonia is challenging to identify in humans precisely because of this diagnostic difficulty. Therefore, we utilized murine models to define host response differences between typical bacterial, atypical bacterial, and viral pneumonia. Methods Mice were intranasally inoculated with S. pneumoniae (n = 38), M. pneumoniae (n = 27), H1N1 pr8 (n = 19), or saline as a control (n = 42). RNA was extracted from peripheral blood collected at 24, 48, 72, 120, or 168 hours and subjected to microarray analysis. Diagnostic signatures were generated using lasso logistic regression and accuracy was assessed using nested leave-one-out cross-validation with feature selection repeated within each iteration. Differentially expressed genes were used to perform gene set enrichment analysis. These murine-derived signatures were externally validated in silico in 487 human subjects found across 5 publicly available data sets. Results We generated pathogen-specific murine disease signatures that performed with 91–100% accuracy. Pathway analysis revealed that animals with pneumococcal pneumonia had a robust immune response by 48 hours that continued to 72 hours post-infection. In contrast, animals infected with M. pneumoniae did not show evidence of a strong immune response until 72-hours post-infection. Additionally, the immune response to M. pneumoniae bared greater similarity to the viral response than it did to the host pneumococcal response. H1N1-infected mice showed an anti-viral response at 120 hours that resolved by 168 hours post-infection. The AUC values resulting from independent human validation of our murine signatures ranged from 89 to 98%. Conclusion There are discrete host responses to typical bacterial, atypical bacterial, and viral etiologies of pneumonia in mice. These signatures validate well in humans, highlighting the conserved nature of the host response to these pathogen classes. Disclosures Ephraim L. Tsalik, MD MHS PhD, Immunexpress: Consultant; Predigen, Inc.: Officer or Board Member, Research Grant.
    Type of Medium: Online Resource
    ISSN: 2328-8957
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2757767-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genome Medicine, Springer Science and Business Media LLC, Vol. 6, No. 11 ( 2014-11)
    Type of Medium: Online Resource
    ISSN: 1756-994X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 2484394-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Open Forum Infectious Diseases, Oxford University Press (OUP), Vol. 7, No. Supplement_1 ( 2020-12-31), p. S633-S634
    Abstract: Difficulty distinguishing bacterial and viral infections contributes to excess antibiotic use. A host response strategy overcomes many limitations of pathogen-based tests, but depends on a functional immune system. This approach may therefore be limited in immunocompromised (IC) hosts. Here, we evaluated a host response test in IC subjects, which has not been extensively studied in this manner. Methods An 81-gene signature was measured using qRT-PCR in previously enrolled IC subjects (chemotherapy, solid organ transplant, immunomodulatory agents, AIDS) with confirmed bacterial infection, viral infection, or non-infectious illness (NI). A regularized logistic regression model estimated the likelihood of bacterial, viral, and noninfectious classes. Clinical adjudication was the reference standard. Results A host gene expression model trained in a cohort of 136 immunocompetent subjects (43 bacterial, 41 viral, and 52 NI) had an overall accuracy of 84.6% for the diagnosis of bacterial vs. non-bacterial infection and 80.8% for viral vs. non-viral infection. The model was validated in an independent cohort of 134 IC subjects (64 bacterial, 28 viral, 42 NI). The overall accuracy was 73.9% for bacterial infection (p=0.03 vs. training cohort) and 75.4% for viral infection (p=0.27). Test utility could be improved by reporting probability ranges. For example, results divided into probability quartiles would allow the highest quartile to be used to rule in infection and the lowest to rule out infection. For IC subjects in the lowest quartile, the test had 90.1% and 96.4% sensitivity for bacterial and viral infection, respectively. For the highest quartile, the test had 91.4% and 84.0% specificity for bacterial and viral infection, respectively. The type or number of immunocompromising conditions did not impact performance. Illness Etiology Probabilities Conclusion A host gene expression test discriminated bacterial, viral, and non-infectious etiologies at a lower overall accuracy in IC patients compared to immunocompetent patients, though this difference was only significant for bacterial vs non-bacterial disease. With modified interpretive criteria, a host response strategy may offer clinically useful and complementary diagnostic information for IC patients. Disclosures Thomas W. Burke, PhD, Predigen, Inc (Consultant) Geoffrey S. Ginsburg, MD PhD, Predigen, Inc (Shareholder, Other Financial or Material Support) Christopher W. Woods, MD, MPH, FIDSA, Predigen, Inc (Shareholder, Other Financial or Material Support) Ephraim L. Tsalik, MD, MHS, PhD, FIDSA, Predigen, Inc (Scientific Research Study Investigator, Shareholder, Other Financial or Material Support)
    Type of Medium: Online Resource
    ISSN: 2328-8957
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2757767-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Open Forum Infectious Diseases, Oxford University Press (OUP), Vol. 7, No. 6 ( 2020-06-01)
    Abstract: Pathogen-based diagnostics for acute respiratory infection (ARI) have limited ability to detect etiology of illness. We previously showed that peripheral blood-based host gene expression classifiers accurately identify bacterial and viral ARI in cohorts of European and African descent. We determined classifier performance in a South Asian cohort. Methods Patients ≥15 years with fever and respiratory symptoms were enrolled in Sri Lanka. Comprehensive pathogen-based testing was performed. Peripheral blood ribonucleic acid was sequenced and previously developed signatures were applied: a pan-viral classifier (viral vs nonviral) and an ARI classifier (bacterial vs viral vs noninfectious). Results Ribonucleic acid sequencing was performed in 79 subjects: 58 viral infections (36 influenza, 22 dengue) and 21 bacterial infections (10 leptospirosis, 11 scrub typhus). The pan-viral classifier had an overall classification accuracy of 95%. The ARI classifier had an overall classification accuracy of 94%, with sensitivity and specificity of 91% and 95%, respectively, for bacterial infection. The sensitivity and specificity of C-reactive protein ( & gt;10 mg/L) and procalcitonin ( & gt;0.25 ng/mL) for bacterial infection were 100% and 34%, and 100% and 41%, respectively. Conclusions Previously derived gene expression classifiers had high predictive accuracy at distinguishing viral and bacterial infection in South Asian patients with ARI caused by typical and atypical pathogens.
    Type of Medium: Online Resource
    ISSN: 2328-8957
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2757767-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  Open Forum Infectious Diseases Vol. 6, No. Supplement_2 ( 2019-10-23), p. S481-S481
    In: Open Forum Infectious Diseases, Oxford University Press (OUP), Vol. 6, No. Supplement_2 ( 2019-10-23), p. S481-S481
    Abstract: Host response-based diagnostics are an alternative to pathogen-based tests. Host response strategies include proteomic and transcriptomic approaches. Here, we compare three host response strategies for ARI diagnosis: Procalcitonin (PCT), a 3-protein panel, and an mRNA panel. Methods PCT, a 3-protein panel (CRP, IP-10, TRAIL), and a host gene expression mRNA panel were measured in a cohort of 286 participants presenting to one of the four Emergency Departments with ARI due to bacterial (n = 47), viral (n = 162), or noninfectious (n = 77) etiologies. Multinomial logistic regression and leave-one-out cross-validation were used to train and evaluate the protein and mRNA panels. Performance characteristics were calculated for each method, and their combination, for the ability to discriminate bacterial vs. non-bacterial infection and viral vs. nonviral infection. PCT was not evaluated for viral vs. nonviral discrimination since it does not discriminate viral and noninfectious etiologies. McNemar’s test was used to compare overall accuracy of mRNA and protein panels. Results For discriminating bacterial vs. non-bacterial etiologies, the mRNA panel had an AUC of 0.93 vs. 0.83 for both the protein panel and PCT. A model utilizing all three strategies was the same as mRNA alone. Using previously established cutoffs, overall accuracy was similar between mRNA and protein panels, but the protein panel had widely discordant sensitivity (43%) and specificity (92%). When selecting an optimal cutoff for the protein panel that balanced the two (82% and 73%, respectively), the mRNA panel had a significantly greater overall accuracy (P 〈 0.001). Similar results were found when discriminating viral vs. non-viral subjects: the mRNA panel (AUC = 0.93) outperformed the protein panel (AUC = 0.84). Combining the mRNA and protein panels was equivalent to the mRNA panel alone. Conclusion A host-based gene expression signature is the most effective platform for classifying subjects with bacterial, viral, or noninfectious ARI. A gene expression approach, when translated to a clinically available platform, may facilitate diagnosis and clinical management of acute infectious diseases, mitigating antibiotic overuse. Disclosures Ephraim L. Tsalik, MD, MHS, PhD, Immunexpress: Consultant; Predigen, Inc.: Officer or Board Member, Research Grant.
    Type of Medium: Online Resource
    ISSN: 2328-8957
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2757767-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Infectious Diseases, Oxford University Press (OUP), Vol. 73, No. 4 ( 2021-08-16), p. 605-613
    Abstract: Host gene expression has emerged as a complementary strategy to pathogen detection tests for the discrimination of bacterial and viral infection. The impact of immunocompromise on host-response tests remains unknown. We evaluated a host-response test discriminating bacterial, viral, and noninfectious conditions in immunocompromised subjects. Methods An 81-gene signature was measured using real-time–polymerase chain reaction in subjects with immunocompromise (chemotherapy, solid-organ transplant, immunomodulatory agents, AIDS) with bacterial infection, viral infection, or noninfectious illness. A regularized logistic regression model trained in immunocompetent subjects was used to estimate the likelihood of each class in immunocompromised subjects. Results Accuracy in the 136-subject immunocompetent training cohort was 84.6% for bacterial versus nonbacterial discrimination and 80.8% for viral versus nonviral discrimination. Model validation in 134 immunocompromised subjects showed overall accuracy of 73.9% for bacterial infection (P = .04 relative to immunocompetent subjects) and 75.4% for viral infection (P = .30). A scheme reporting results by quartile improved test utility. The highest probability quartile ruled-in bacterial and viral infection with 91.4% and 84.0% specificity, respectively. The lowest probability quartile ruled-out infection with 90.1% and 96.4% sensitivity for bacterial and viral infection, respectively. Performance was independent of the type or number of immunocompromising conditions. Conclusions A host gene expression test discriminated bacterial, viral, and noninfectious etiologies at a lower overall accuracy in immunocompromised patients compared with immunocompetent patients, although this difference was only significant for bacterial infection classification. With modified interpretive criteria, a host-response strategy may offer clinically useful diagnostic information for patients with immunocompromise.
    Type of Medium: Online Resource
    ISSN: 1058-4838 , 1537-6591
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2002229-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Lancet Infectious Diseases, Elsevier BV, Vol. 21, No. 3 ( 2021-03), p. 396-404
    Type of Medium: Online Resource
    ISSN: 1473-3099
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...