GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. LB-118-LB-118
    Abstract: Background: TRK inhibition is now standard of care for advanced pediatric and adult patients (pts) with TRK fusion solid tumors, regardless of origin. To date, TRK kinase domain mutations are the only known resistance mechanism, and next-generation TRK inhibitors active against these mutations such as LOXO-195 are being developed. We reasoned some pts will develop TRK-independent resistance and hypothesized that these pts will require unique therapeutic approaches. Methods: Paired tumor biopsies and serial cell-free DNA (cfDNA) prospectively collected from pts with TRK fusion-positive cancers treated with first- and next-generation TRK inhibitors before treatment and at progression were sequenced. In parallel, pt-derived and engineered models were analyzed. Results: Alterations involving upstream non-TRK receptor kinases and downstream MAPK pathway members were initially identified in tumors from 3 TRK fusion-positive gastrointestinal (GI) cancer pts who developed resistance to TRK inhibitors. Pt 1 with CTRC-NTRK1 pancreatic cancer developed temporally distinct emergent BRAF V600E and KRAS G12D mutations. Pt 2 with LMNA-NTRK1 colorectal cancer developed temporally distinct KRAS G12A and G12D mutations. Pt 3 with PLEKHA6-NTRK1 cholangiocarcinoma developed focal MET amplification. Phenocopying these clinical observations, pt-derived xenografts and primary cell lines developed BRAF and KRAS mutations following chronic TRK inhibition. Consistently, ectopic expression of these alterations conferred resistance to TRK inhibitors. Given that all 3 index pts had GI cancers, we expanded serial cfDNA sequencing to 5 additional TRK fusion-positive GI disease, identifying 3 with emergent MAPK alterations at progression, bringing the overall frequency of acquired MAPK alterations in GI cancers analyzed to 75% (6/8). To further evaluate whether these emergent alterations induced functional dependence on ERK signaling, pts 1-3 were treated with agents targeting these emergent alterations (dabrafenib + trametinib, LOXO-195 + trametinib, and LOXO-195 + crizotinib, respectively). Pt 1 achieved transient tumor regression, followed by outgrowth of KRAS-mutant disease. Pt 3 achieved a 4.5 months tumor regression. Sequencing at progression in pt 3 identified multiple acquired MET point mutations known to interfere with crizotinib binding. Conclusions: These data suggest that a subset of TRK fusion-positive cancers will develop off-target mechanisms of resistance to TRK inhibition. Relative to other TRK fusion-positive tumors, GI cancers may have a higher propensity for developing these bypass alterations that demonstrate remarkable convergence on ERK signaling. A portion of these mechanisms may be managed with simultaneous targeting of the TRK and MAPK pathways, although additional modeling is required to determine if upfront treatment would confer more durable responses. Citation Format: Emiliano Cocco, Amanda Kulick, Sandra Misale, Rona Yaeger, Pedram Razavi, Helen H. Won, Ryan Ptashkin, Jaclyn F. Hechtman, Eneda Toska, James Cownie, Romel Somwar, Sophie Shifman, Marissa Mattar, S Duygu Selçuklu, Aliaksandra Samoila, Sean Guzman, Brian B. Tuch, Kevin Ebata, Elisa de Stanchina, Rebecca J. Nagy, Richard B. Lanman, Michael F. Berger, Marc Ladanyi, David M. Hyman, Alexander Drilon, Maurizio Scaltriti, Alison M. Schram. Resistance to TRK inhibition mediated by convergent MAP kinase pathway activation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr LB-118.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 4 ( 2019-02-15), p. 1248-1260
    Abstract: MET exon 14 splice site alterations that cause exon skipping at the mRNA level (METex14) are actionable oncogenic drivers amenable to therapy with MET tyrosine kinase inhibitors (TKI); however, secondary resistance eventually arises in most cases while other tumors display primary resistance. Beyond relatively uncommon on-target MET kinase domain mutations, mechanisms underlying primary and acquired resistance remain unclear. Experimental Design: We examined clinical and genomic data from 113 patients with lung cancer with METex14. MET TKI resistance due to KRAS mutation was functionally evaluated using in vivo and in vitro models. Results: Five of 113 patients (4.4%) with METex14 had concurrent KRAS G12 mutations, a rate of KRAS cooccurrence significantly higher than in other major driver-defined lung cancer subsets. In one patient, the KRAS mutation was acquired post-crizotinib, while the remaining 4 METex14 patients harbored the KRAS mutation prior to MET TKI therapy. Gene set enrichment analysis of transcriptomic data from lung cancers with METex14 revealed preferential activation of the KRAS pathway. Moreover, expression of oncogenic KRAS enhanced MET expression. Using isogenic and patient-derived models, we show that KRAS mutation results in constitutive activation of RAS/ERK signaling and resistance to MET inhibition. Dual inhibition of MET or EGFR/ERBB2 and MEK reduced growth of cell line and xenograft models. Conclusions: KRAS mutation is a recurrent mechanism of primary and secondary resistance to MET TKIs in METex14 lung cancers. Dual inhibition of MET or EGFR/ERBB2 and MEK may represent a potential therapeutic approach in this molecular cohort.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 25, No. 9 ( 2019-09), p. 1422-1427
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Neuro-Oncology Advances, Oxford University Press (OUP), Vol. 1, No. Supplement_1 ( 2019-08-12), p. i7-i7
    Abstract: BACKGROUND: CNS metastases occur in 20–50% of lung cancer patients during their disease; leptomeningeal disease (LMD) representing 5–8%, classically carries a poor prognosis with a median overall survival ranging from 1–11 months. There is a paucity of patient-derived preclinical disease models using tumor cells isolated from the CSF. Models that faithfully recapitulate the biology of CNS tumors would offer new insights into the biology of the disease as well as provide the basis for developing more effective therapy. METHODS: To create more representative preclinical models to study LMD we isolated tumor cells from CSF of 5 patients with cytologically proven LMD and implanted the cells into the subcutaneous flank of immune-compromised mice. Where possible, cell lines were also generated from PDX tissues. Models were characterized by next generation sequencing (NGS), growth rates, expression of driver oncogenes and sensitivity to small molecule inhibitors. RESULTS: To date, one PDX (LUAD-0048A) and cell line model were successfully derived from CSF samples (NSCLC patient with MET amplification) and 4 are pending. MET amplification and mRNA over-expression were confirmed by quantitative PCR in the PDX tissue and the cell line. Western blot analysis indicated that over-expressed MET was phosphorylated in both PDX tissue and cell line. These results were confirmed by immunohistochemistry. Growth of LUAD-0048A cells were unaffected by 3 MET inhibitors (crizotinib, cabozantinib, glesatinib). Similarly, MET inhibitors did not induce apoptosis in the cells. CONCLUSION: LMD represents an aggressive metastatic event in lung cancer patients. Here we were able to successfully establish a PDX from the CSF of a patient with LMD and trial targeted therapies in vivo. Translational collaborations where patients with clinical suspicion of LMD undergo CSF sampling, NGS/ctDNA analysis, and PDX modeling are crucial in improving our understanding of this metastatic compartment and investigating novel treatment paradigms.
    Type of Medium: Online Resource
    ISSN: 2632-2498
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 3009682-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 15_suppl ( 2017-05-20), p. 11583-11583
    Abstract: 11583 Background: Lung cancers driven by oncogenic RET fusions have lower response rates to targeted monotherapy such as cabozantinib (28%) relative to response rates typically observed in ALK- or ROS1- rearranged lung adenocarcinomas (60-80%). Methods: To identify targetable co-dependencies or cooperating pathways for RET fusion-positive lung cancers, we performed high-throughput chemical and genetic screens to find FDA-approved drugs or genes that when inhibited, would synergize with cabozantinib in RET fusion-positive lung cancer cell lines. In addition we performed NGS of a pair of pre-treatment and post-cabozantinib progression samples. Results: We identified EGFR siRNAs and anti-EGFR drugs as synergistic with cabozantinib. Combinations of drugs that target EGFR (cetuximab, afatinib, erlotinib, gefitinib, neratinib) and RET (cabozantinib, CEP-32496, lenvatinib, vandetanib) were more effective at reducing growth of RET cell lines than any single agent in vitro and in xenograft models. Cabozantinib treatment of RET fusion-positive cell lines inhibited EGFR and RET phosphorylation, an observation not seen in RET wild-type cell lines. Co-immunoprecipitation studies reveal that RET and EGFR interact. Ectopic expression of CCDC6-RET in NIH-3T3 or human bronchial epithelial cells resulted in upregulation of multiple ERBB receptors and ligands (not seen in a ROS1 fusion-positive cell line) and a concomitant increase in EGFR stability. Treatment with ERBB pathway ligands or overexpression of EGFR decreased sensitivity to cabozantinib in two RET fusion-positive cell lines. Finally, sequencing of a pair of pre-treatment and post-progression samples from a lung cancer patient treated with cabozantinib revealed acquired amplification of EGFR in the latter sample. Conclusions: Taken together, these results suggest that the tumorigenic potential of RET fusion oncogenes is dependent on deregulation of ERBB-activated pathways and that a combination of RET and EGFR drugs could be more effective in treating RET fusion-positive tumors. Moreover, amplification of EGFR is a potential driver of resistance to cabozantinib in RET-rearranged lung cancers.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 34, No. 15_suppl ( 2016-05-20), p. 9068-9068
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2016
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 36, No. 15_suppl ( 2018-05-20), p. 12122-12122
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2018
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 26, No. 12 ( 2020-06-15), p. 2932-2945
    Abstract: ROS1 tyrosine kinase inhibitors (TKI) provide significant benefit in lung adenocarcinoma patients with ROS1 fusions. However, as observed with all targeted therapies, resistance arises. Detecting mechanisms of acquired resistance (AR) is crucial to finding novel therapies and improve patient outcomes. Experimental Design: ROS1 fusions were expressed in HBEC and NIH-3T3 cells either by cDNA overexpression (CD74/ROS1, SLC34A2/ROS1) or CRISPR-Cas9–mediated genomic engineering (EZR/ROS1). We reviewed targeted large-panel sequencing data (using the MSK-IMPACT assay) patients treated with ROS1 TKIs, and genetic alterations hypothesized to confer AR were modeled in these cell lines. Results: Eight of the 75 patients with a ROS1 fusion had a concurrent MAPK pathway alteration and this correlated with shorter overall survival. In addition, the induction of ROS1 fusions stimulated activation of MEK/ERK signaling with minimal effects on AKT signaling, suggesting the importance of the MAPK pathway in driving ROS1 fusion-positive cancers. Of 8 patients, 2 patients harbored novel in-frame deletions in MEK1 (MEK1delE41_L54) and MEKK1 (MEKK1delH907_C916) that were acquired after ROS1 TKIs, and 2 patients harbored NF1 loss-of-function mutations. Expression of MEK1del or MEKK1del, and knockdown of NF1 in ROS1 fusion-positive cells activated MEK/ERK signaling and conferred resistance to ROS1 TKIs. Combined targeting of ROS1 and MEK inhibited growth of cells expressing both ROS1 fusion and MEK1del. Conclusions: We demonstrate that downstream activation of the MAPK pathway can mediate of innate acquired resistance to ROS1 TKIs and that patients harboring ROS1 fusion and concurrent downstream MAPK pathway alterations have worse survival. Our findings suggest a treatment strategy to target both aberrations.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 956-956
    Abstract: Fusions involving the neuregulin 1 gene (NRG1) occur at low frequency in pancreatic, lung, and other cancers. NRG1 fusion oncoproteins bind to HER3, leading to heterodimerization with HER2 and potent activation of downstream signaling mainly via the PI3K-AKT pathway. Zenocutuzumab (Zeno, MCLA-128), an ADCC-enhanced anti-HER2×HER3 bi-specific antibody, uniquely ‘docks' on HER2, to position the antibody and subsequently ‘block' NRG1 from interacting with HER3, effectively preventing HER2:HER3 heterodimerization and downstream signaling. Our goal in this study was to evaluate the efficacy of Zeno in preclinical models of NRG1 fusion-positive cancers. We tested Zeno in a panel of isogenic and patient-derived cell line and xenograft (PDX) models of lung, breast and pancreatic cancers. Cell lines either expressed an NRG1 fusion endogenously (MDA-MB-175-VII, DOC4-NRG1) or by lentiviral transfer of cDNAs (ATP1B1-NRG1 and SLC3A2-NRG1 in H6c7 pancreatic ductal cell line; CD74-NRG1 and VAMP2-NRG1 in immortalized human bronchial epithelial cells; and DOC4-NRG1 in MCF7 breast cancer cells). PDX models were generated from NSCLC samples harboring CD74-NRG1 (ST3204) or SLC3A2-NRG1 (LUAD-0061AS3) fusions and from a high grade serous ovarian cancer harboring a CLU-NRG1 fusion (OV-10-0050). Zeno treatment of NRG1 fusion-expressing breast, pancreatic, and lung cancer cell lines resulted in dose-dependent reduction of growth and abrogated phosphorylation of HER3, HER4, AKT, p70S6 kinase and STAT3 in all cell lines tested. Phosphorylation of HER2, EGFR and MEK/ERK was inhibited, albeit with some variation, in a cell line-specific manner. Growth of isogenic control cell lines without NRG1 fusion was not significantly altered. In breast and lung cancer cell lines, Zeno treatment down-regulated cyclin D1 expression and induced expression of the negative cell cycle regulators P21 or P27. Evidence of apoptosis activation (cleaved PARP, expression of BIM and PUMA) was also observed in cells exposed to Zeno. Treatment of mice bearing LUAD-0061AS3, ST3204 and OV-10-0050 PDX tumors (2.5, 8, 25 mg/kg, QW) caused a dose-dependent inhibition of tumor growth, with tumor shrinkage observed at higher doses. Finally, we assessed the ability of Zeno to induce antibody-dependent cellular cytotoxicity using a chromium release assay and peripheral blood mononuclear cells. Zeno induced significant cytotoxicity in MDA-MB-175-VII cells while a non-ADCC enhanced, non-specific IgG had no effect. Here we show that Zeno effectively blocks the growth of NRG1 fusion-positive cell line and xenograft models of tumors arising from lung, pancreas and other organs, and these results support the continued development of Zeno to treat patients with this molecularly defined subset of cancers. Citation Format: Igor Odintsov, Inna Khodos, Madelyn Espinosa-Cotton, Allan J. Lui, Marissa Mattar, Alison M. Schram, Ron C. Schackmann, Jeroen Lammerts van Bueren, Cecile A. Geuijen, Elisa de Stanchina, Marc Ladanyi, Romel Somwar. The HER2×HER3 bi-specific antibody Zenocutuzumab is effective at blocking growth of tumors driven by NRG1 gene fusions [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 956.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 1826-1826
    Abstract: Mutations in MET that induce skipping of exon 14 and lead to reduced ubiquitin ligase-mediated turnover of this receptor tyrosine kinase (RTK) are detected in 3-4% of non-small cell lung cancer (NSCLC), approaching the prevalence of ALK-rearranged lung cancers. Preclinical and clinical studies have revealed that MET exon14 alterations are actionable oncogenic drivers that are amenable to therapy with MET kinase inhibitors such as crizotinib. However, similar to most kinase-driven cancers, despite initial benefit, acquired resistance to therapy is inevitable. Next-generation sequencing (MSK-IMPACT 468 gene panel) was performed on samples from 81 NSCLC patients with MET exon14 alterations, including 7 with paired pre- and post-treatment tumor samples. A concurrent KRAS G12 mutation was identified in 5 patients. In 4 of these patients, the KRAS mutation was present prior to receiving crizotinib. The KRAS mutation was acquired post-crizotinib in the remaining patient. These findings implicate KRAS activation as a potential mechanism of acquired resistance. Using isogenic and patient-derived in vitro and in vivo models harboring MET exon14 skipping alteration, we confirmed that the KRAS mutation results in constitutive activation of RAS/ERK signaling and cells expressing both MET exon14 skipping and KRAS mutations are refractory to MET inhibition. Dual inhibition of MET and MEK with crizotinib and trametinib, respectively, has an additive effect in cell line and xenograft models. Whereas concurrent KRAS mutation is an extremely rare event in EGFR- and ALK-driven NSCLC, our findings confirm KRAS mutation as a recurrent mechanism of primary or secondary resistance to MET-directed therapies in lung cancers harboring MET exon14 alterations. We provide a new potential therapeutic strategy for NSCLC patients with both MET exon14 alterations and KRAS mutations. Citation Format: Ken Suzawa, Michael D. Offin, Christopher Kurzatkowski, Daniel Liu, Morana Vojnic, Roger S. Smith, Marissa Mattar, Inna Khodos, Elisa de Stanchina, Joshua K. Sabari, William W. Lockwood, Alexander E. Drilon, Marc Ladanyi, Romel Somwar. Oncogenic KRAS mediates resistance to MET targeted therapy in non-small cell lung cancer (NSCLC) with MET mutations that induce exon14 skipping [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 1826.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...