GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mao, Zhenchuan  (12)
  • Zhao, Jianlong  (12)
  • 1
    In: Horticulture Research, Oxford University Press (OUP), Vol. 9 ( 2022-01-05)
    Abstract: Root-knot nematodes (RKN; Meloidogyne spp.) cause a significant decrease in the yield of cucumber crops every year. Cucumis metuliferus is an important wild germplasm that has resistance to RKN in which plant root volatiles are thought to play a role. However, the underlying molecular mechanism is unclear. To investigate it, we used the resistant C. metuliferus line CM3 and the susceptible cucumber line Xintaimici (XTMC). CM3 roots repelled Meloidogyne incognita second-stage larvae (J2s), while the roots of XTMC plants attracted the larvae. CM3 and XTMC were found to contain similar amounts of root volatiles, but many volatiles, including nine hydrocarbons, three alcohols, two aldehydes, two ketones, one ester, and one phenol, were only detected in CM3 roots. It was found that one of these, (methoxymethyl)-benzene, could repel M. incognita, while creosol and (Z)-2-penten-1-ol could attract M. incognita. Interestingly, creosol and (Z)-2-penten-1-ol effectively killed M. incognita at high concentrations. Furthermore, we found that a mixture of CM3 root volatiles increased cucumber resistance to M. incognita. The results provide insights into the interaction between the host and plant-parasitic nematodes in the soil, with some compounds possibly acting as nematode biofumigation, which can be used to manage nematodes.
    Type of Medium: Online Resource
    ISSN: 2052-7276
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2781828-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Plant Journal, Wiley, Vol. 107, No. 1 ( 2021-07), p. 136-148
    Abstract: The chromosome‐level genome of Cucumis metuliferus was reported, and the population sequencing revealed the origin and evolution of C. metuliferus . This study displayed the genome evolution among Cucumis and revealed the evolution pattern of nucleotide‐binding site leucine‐rich repeat genes in Cucurbitaceae.
    Type of Medium: Online Resource
    ISSN: 0960-7412 , 1365-313X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020961-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Plant Biotechnology Journal, Wiley, Vol. 21, No. 7 ( 2023-07), p. 1496-1509
    Abstract: Root‐knot nematodes (RKNs) are infamous plant pathogens in tomato production, causing considerable losses in agriculture worldwide. Mi‐1 is the only commercially available RKN‐resistance gene; however, the resistance is inactivated when the soil temperature is over 28 °C. Mi‐9 in wild tomato ( Solanum arcanum LA2157) has stable resistance to RKNs under high temperature but has not been cloned and applied. In this study, a chromosome‐scale genome assembly of S. arcanum LA2157 was constructed through Nanopore and Hi‐C sequencing. Based on molecular markers of Mi‐9 and comparative genomic analysis, the localization region and candidate Mi‐9 genes cluster consisting of seven nucleotide‐binding sites and leucine‐rich repeat (NBS‐LRR) genes were located. Transcriptional expression profiles confirmed that five of the seven candidate genes were expressed in root tissue. Moreover, virus‐induced gene silencing of the Sarc_034200 gene resulted in increased susceptibility of S. arcanum LA2157 to Meloidogyne incognita , and genetic transformation of the Sarc_034200 gene in susceptible Solanum pimpinellifolium conferred significant resistance to M. incognita at 25 °C and 30 °C and showed hypersensitive responses at nematode infection sites. This suggested that Sarc_034200 is the Mi‐9 gene. In summary, we cloned, confirmed and applied the heat‐stable RKN‐resistance gene Mi‐9 , which is of great significance to tomato breeding for nematode resistance.
    Type of Medium: Online Resource
    ISSN: 1467-7644 , 1467-7652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2136367-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Plant Science Vol. 14 ( 2023-5-30)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-5-30)
    Abstract: Root-knot nematodes (RKN) disease is a devastating disease in Cucumis crops production. Existing studies have shown that resistant and susceptible crops are enriched with different rhizosphere microorganisms, and microorganisms enriched in resistant crops can antagonize pathogenic bacteria. However, the characteristics of rhizosphere microbial communities of Cucumis crops after RKN infestation remain largely unknown. Methods In this study, we compared the changes in rhizosphere bacterial communities between highly RKN-resistant Cucumis metuliferus (cm3) and highly RKN-susceptible Cucumis sativus (cuc) after RKN infection through a pot experiment. Results The results showed that the strongest response of rhizosphere bacterial communities of Cucumis crops to RKN infestation occurred during early growth, as evidenced by changes in species diversity and community composition. However, the more stable structure of the rhizosphere bacterial community in cm3 was reflected in less changes in species diversity and community composition after RKN infestation, forming a more complex and positively co-occurrence network than cuc. Moreover, we observed that both cm3 and cuc recruited bacteria after RKN infestation, but the bacteria enriched in cm3 were more abundant including beneficial bacteria Acidobacteria, Nocardioidaceae and Sphingomonadales. In addition, the cuc was enriched with beneficial bacteria Actinobacteria, Bacilli and Cyanobacteria. We also found that more antagonistic bacteria than cuc were screened in cm3 after RKN infestation and most of them were Pseudomonas (Proteobacteria, Pseudomonadaceae), and Proteobacteria were also enriched in cm3 after RKN infestation. We hypothesized that the cooperation between Pseudomonas and the beneficial bacteria in cm3 could inhibit the infestation of RKN. Discussion Thus, our results provide valuable insights into the role of rhizosphere bacterial communities on RKN diseases of Cucumis crops, and further studies are needed to clarify the bacterial communities that suppress RKN in Cucumis crops rhizosphere.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Fungi, MDPI AG, Vol. 8, No. 10 ( 2022-10-16), p. 1089-
    Abstract: Fusarium oxysporum f. sp. conglutinans (FOC), the causal agent of cabbage fusarium wilt, is a serious threat to cabbage production in northern China, and most Chinese FOC isolates were identified as FOC race 1 (FOC1). To better understand the genetic diversity of FOC1 in northern China, we collected FOC isolates from five provinces in northern China and identified them as FOC1 through pathogenicity and race test. To evaluate the genome-level diversity of FOC1, we performed a genome assembly for a FOC1 isolate (FoYQ-1) collected from Yanqing, Beijing, where cabbage fusarium wilt was first reported in China. Using resequencing data of FOC1 isolates, we conducted a genome-wide SNP (single nucleotide polymorphism) analysis to investigate the genetic diversity and population structure of FOC1 isolates in northern China. Our study indicated that Chinese FOC1 can be grouped into four populations and revealed that the genetic diversity of FOC1 were closely associated with geographical locations. Our study further suggests that genetic differentiation occurred when FOC1 spread to the northwest provinces from Beijing Province in China. The FOC1 genetic diversity based on whole-genome SNPs could deepen our understanding of FOC1 variation and provide clues for the control of cabbage fusarium wilt in China.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Fungi, MDPI AG, Vol. 9, No. 5 ( 2023-05-19), p. 595-
    Abstract: Trichoderma hamatum is a filamentous fungus that serves as a biological control agent for multiple phytopathogens and as an important resource promising for fungicides. However, the lack of adequate knockout technologies has hindered gene function and biocontrol mechanism research of this species. This study obtained a genome assembly of T. hamatum T21, with a 41.4 Mb genome sequence comprising 8170 genes. Based on genomic information, we established a CRISPR/Cas9 system with dual sgRNAs targets and dual screening markers. CRISPR/Cas9 plasmid and donor DNA recombinant plasmid were constructed for disruption of the Thpyr4 and Thpks1 genes. The result indicates the consistency between phenotypic characterization and molecular identification of the knockout strains. The knockout efficiencies of Thpyr4 and Thpks1 were 100% and 89.1%, respectively. Moreover, sequencing revealed fragment deletions between dual sgRNA target sites or GFP gene insertions presented in knockout strains. The situations were caused by different DNA repair mechanisms, nonhomologous end joining (NHEJ), and homologous recombination (HR). Overall, we have successfully constructed an efficient and convenient CRISPR/Cas9 system in T. hamatum for the first time, which has important scientific significance and application value for studies on functional genomics of Trichoderma and other filamentous fungi.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Plant Science Vol. 14 ( 2023-3-20)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-3-20)
    Abstract: Root-knot nematode (RKN) is a major factor that limits the growth and productivity of important Cucumis crops, such as cucumber and melon, which lack RKN-resistance genes in their genome. Cucumis metuliferus is a wild Cucumis species that displays a high degree of RKN-resistance. WRKY transcription factors were involved in plant response to biotic stresses. However, little is known on the function of WRKY genes in response to RKN infection in Cucumis crops. In this study, Cucumis metuliferus 60 WRKY genes ( CmWRKY ) were identified in the C. metuliferus genome, and their conserved domains were classified into three main groups based on multiple sequence alignment and phylogenetic analysis. Synteny analysis indicated that the WRKY genes were highly conserved in Cucumis crops. Transcriptome data from of C. metuliferus roots inoculated with RKN revealed that 16 CmWRKY genes showed differential expression, of which 13 genes were upregulated and three genes were downregulated, indicating that these CmWRKY genes are important to C. metuliferus response to RKN infection. Two differentially expression CmWRKY genes ( CmWRKY10 and CmWRKY28 ) were selected for further functional analysis. Both CmWRKY genes were localized in nucleus, indicating they may play roles in transcriptional regulation. This study provides a foundation for further research on the function of CmWRKY genes in RKN stress resistance and elucidation of the regulatory mechanism.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Applied Microbiology, Oxford University Press (OUP), Vol. 134, No. 2 ( 2023-02-16)
    Abstract: Root-knot nematodes (RKNs) are plant pathogens that cause huge economic losses worldwide. The biological management of RKNs may be a sustainable alternative to chemical control methods. Here, the biocontrol potential of Methylorubrum rhodesianum M520 against the RKN Meloidogyne incognita was investigated to theoretically support its application as a biocontrol agent in field production. Methods and results In-vitro assays showed 91.9% mortality of M. incognita second-stage juveniles in the presence of strain M520 and that the hatching rate of M. incognita eggs was 21.7% lower than that of eggs treated with sterile water. In pot experiments, the M520 treatment caused 70.8% reduction in root-knots and increased plant shoot length and stem and root fresh weights, compared to control plant values. In split-root experiments, cucumber roots treated with M520 showed 25.6% decrease in root gall number, compared to that in control roots. Conclusion M520 has multiple mechanisms against RKNs and might be used as a biocontrol agent against M. incognita in cucumber, laying a foundation for further studying M520 biocontrol against RKNs.
    Type of Medium: Online Resource
    ISSN: 1365-2672
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2020421-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2023
    In:  Horticultural Plant Journal Vol. 9, No. 1 ( 2023-02), p. 133-144
    In: Horticultural Plant Journal, Elsevier BV, Vol. 9, No. 1 ( 2023-02), p. 133-144
    Type of Medium: Online Resource
    ISSN: 2468-0141
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2885064-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: New Phytologist, Wiley, Vol. 232, No. 5 ( 2021-12), p. 2124-2137
    Abstract: Root‐knot nematodes, Meloidogyne spp., secrete effectors to modulate plant immune responses and establish a parasitic relationship with host plants. However, the functions and plant targets of C‐type lectin (CTL)‐like effectors of Meloidogyne incognita remain unknown. Here, we characterized a CTL‐like effector of M. incognita , MiCTL1a, and identified its target and role in nematode parasitism. In situ hybridization demonstrated the expression of MiCTL1 in the subventral glands; and in planta , immunolocalization showed its secretion during M. incognita parasitism. Virus‐induced gene silencing of the MiCTL1 reduced the infection ability of M. incognita in Nicotiana benthamiana . The ectopic expression in Arabidopsis not only increased susceptibility to M. incognita but also promoted root growth. Yeast two‐hybrid and co‐immunoprecipitation assays revealed that MiCTL1a interacts with Arabidopsis catalases, which play essential roles in hydrogen peroxide homeostasis. Knockout or overexpression of catalases showed either increased or reduced susceptibility to M. incognita , respectively. Moreover, MiCTL1a not only reduced catalase activity in vitro and in planta but also modulated stress‐related gene expressions in Arabidopsis. Our data suggest that MiCTL1a interacts with plant catalases and interferes with catalase activity, allowing M. incognita to establish a parasitic relationship with its host by fine‐tuning responses mediated by reactive oxygen species.
    Type of Medium: Online Resource
    ISSN: 0028-646X , 1469-8137
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 208885-X
    detail.hit.zdb_id: 1472194-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...