GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (16)
  • Mao, Xiangbing  (16)
Material
Publisher
  • Frontiers Media SA  (16)
Language
Years
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Immunology Vol. 13 ( 2022-1-31)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 13 ( 2022-1-31)
    Abstract: Transmissible gastroenteritis virus (TGEV) infection can cause transmissible gastroenteritis (TGE), especially in suckling piglets, resulting in a significant economic loss for the global pig industry. The pathogenesis of TGEV infection is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) has anti-inflammatory activity and immunomodulatory properties, but it is unclear whether ATRA can attenuate the inflammatory response induced by TGEV. This study aimed to investigate the protective effect of ATRA on TGEV-induced inflammatory injury in intestinal porcine epithelial cells (IPEC-J2) and to explore the underlying molecular mechanism. The results showed that TGEV infection triggered inflammatory response and damaged epithelial barrier integrity in IPEC-J2 cells. However, ATRA attenuated TGEV-induced inflammatory response by inhibiting the release of pro-inflammatory cytokines, including IL-1β, IL-6, IL-8 and TNF-α. ATRA also significantly reversed the reduction of ZO-1 and Occludin protein levels induced by TGEV infection and maintained epithelial barrier integrity. Moreover, ATRA treatment significantly prevented the upregulation of IкBα and NF-κB p65 phosphorylation levels and the nuclear translocation of NF-кB p65 induced by TGEV. On the other hand, treatment of TGEV-infected IPEC-J2 cells with the NF-κB inhibitors (BAY11-7082) significantly decreased the levels of inflammatory cytokines. Furthermore, ATRA treatment significantly downregulated the mRNA abundance and protein levels of TLR3, TLR7, RIG-I and MDA5, and downregulated their downstream signaling molecules TRIF , TRAF6 and MAVS mRNA expressions in TGEV-infected IPEC-J2 cells. However, the knockdown of RIG-I and MDA5 but not TLR3 and TLR7 significantly reduced the NF-κB p65 phosphorylation level and inflammatory cytokines levels in TGEV-infected IPEC-J2 cells. Our results indicated that ATRA attenuated TGEV-induced IPEC-J2 cells damage via suppressing inflammatory response, the mechanism of which is associated with the inhibition of TGEV-mediated activation of the RLRs/NF‐κB signaling pathway.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Immunology Vol. 12 ( 2021-7-22)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 12 ( 2021-7-22)
    Abstract: L-leucine (Leu), as one of the effective amino acids to activate the mTOR signaling pathway, can alleviate transmissible gastroenteritis virus (TGEV) infection. However, the underlying mechanism by which Leu alleviates the virus infection has not been fully characterized. In particular, how Leu impacts TGEV replication through mTOR signaling has yet to be elucidated. In the present study, we found that TGEV proliferated efficiently in intestinal porcine epithelial cells (IPEC-J2 cells) as evidenced by the increase in viral contents by flow cytometry, the inhibition of cell proliferation by CCK-8 assay as well as the reduction of PCNA level by western blot. Besides, western blot analysis showed that STAT1 expression was markedly reduced in TGEV-infected cells. The results of ELISA revealed the inhibition of ISGs (ISG56, MxA, and PKR) expressions by TGEV infection. TGEV-induced mTOR and its downstream p70 S6K and 4E-BP1, STAT1 and ISGs downregulation were blocked by an mTOR activator-MHY1485 but not by an mTOR inhibitor-RAPA. Concurrently, mTOR activation by MHY1485 reduced the contents of TGEV and vice versa. Furthermore, Leu reversed the inhibition of STAT1 and ISGs by activating mTOR and its downstream p70 S6K and 4E-BP1 in TEGV-infected cells. Our findings demonstrated that Leu promoted the expressions of STAT1 and ISGs via activating mTOR signaling in IPEC-J2 cells, aiming to prevent TGEV infection.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Immunology Vol. 13 ( 2022-8-16)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 13 ( 2022-8-16)
    Abstract: Increasing evidence supports the ability of eugenol to maintain intestinal barrier integrity and anti-inflammatory in vitro and in vivo ; however, whether eugenol alleviates virus-mediated intestinal barrier damage and inflammation remains a mystery. Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Here, we found that eugenol could alleviate TGEV-induced intestinal functional impairment and inflammatory responses in piglets. Our results indicated that eugenol improved feed efficiency in TGEV-infected piglets. Eugenol not only increased serum immunoglobulin concentration ( IgG ) but also significantly decreased serum inflammatory cytokine concentration ( TNF-α ) in TGEV-infected piglets. In addition, eugenol also significantly decreased the expression of NF-κB mRNA and the phosphorylation level of NF-κB P65 protein in the jejunum mucosa of TGEV-infected piglets. Eugenol increased villus height and the ratio of villus height to crypt depth in the jejunum and ileum, and decreased serum D-lactic acid levels. Importantly, eugenol increased tight junction protein ( ZO-1 ) and mRNA expression levels of nutrient transporter-related genes ( GluT-2 and CaT-1 ) in the jejunum mucosa of TGEV-infected piglets. Meanwhile, compared with TGEV-infected IPEC-J2 cells, treatment with eugenol reduced the cell cytopathic effect, attenuated the inflammatory response. Interestingly, eugenol did not increase the expression of ZO-1 and Occludin in IPEC-J2 cells. However, western blot and immunofluorescence results showed that eugenol restored TGEV-induced down-regulation of ZO-1 and Occludin, while BAY11-7082 (The NF-κB specific inhibitor) enhanced the regulatory ability of eugenol. Our findings demonstrated that eugenol attenuated TGEV-induced intestinal injury by increasing the expression of ZO-1 and Occludin , which may be related to the inhibition of NF-κB signaling pathway. Eugenol may offer some therapeutic opportunities for coronavirus-related diseases.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2019
    In:  Frontiers in Immunology Vol. 10 ( 2019-10-4)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 10 ( 2019-10-4)
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Nutrition, Frontiers Media SA, Vol. 9 ( 2023-1-5)
    Type of Medium: Online Resource
    ISSN: 2296-861X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2776676-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-12-13)
    Abstract: Corn and soybean meal are the two main components in formula feed of farm animals, leading to a serious food competition between humans and livestock. An alternative may be to encourage the utilization of unconventional feedstuff in animal diet. In the current study, we evaluated the utilization of fermented alfalfa meal (FAM) in weaned pigs. Twenty weaned piglets (separately caged) were randomly divided into two groups. Pigs in the control group (CON) were fed corn-soybean meal diet, and part of corn and soya protein concentrate in the diet of another group was replaced by 8% FAM. After 40 days of feeding, the average feed intake of FAM pigs was increased ( P & gt; 0.05), and the villus height (VH) of jejunum and duodenum, crypt depth (CD), and VH/CD in FAM pigs was improved compared to the CON group ( P & lt; 0.05). The increase ( P & lt; 0.05) of goblet cells in the jejunum of FAM pigs was positively correlated with the expression of MUC-2 gene ( R = 0.9150). The expression of genes related to immunity ( IRAK4 , NF -κ B , and IL-10 ) and intestinal barrier ( Occludin and MUC-2 ) in the jejunum, as well as the expression of ZO-1 and MUC-2 in the colon of these pigs, also showed increase ( P & lt; 0.05) compared to CON pigs, which was accompanied by the decrease ( P & lt; 0.05) of LPS concentration in the serum. The elevated proportion of CD3 + and CD8 + T-lymphocyte subsets in spleen ( P & lt; 0.05) confirmed the improvement of systemic immune function in FAM pigs. In addition, FAM pigs have a higher β-diversity of microbial community ( P & lt; 0.05) and promoted enrichment of probiotics such as Lactobacillus that positively was correlated with acetate concentration in the colon over CON pigs. In summary, partially replacement of expanded corn and soya protein concentrate with FAM (8%) may benefit the intestinal barrier and immune function of weaned pigs without affecting their growth. Our findings also provide evidence of the feasibility of FAM as a dietary component in pigs to reduce the consumption of grain.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2018
    In:  Frontiers in Immunology Vol. 9 ( 2018-7-16)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 9 ( 2018-7-16)
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 14 ( 2023-11-13)
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2024
    In:  Frontiers in Veterinary Science Vol. 11 ( 2024-4-16)
    In: Frontiers in Veterinary Science, Frontiers Media SA, Vol. 11 ( 2024-4-16)
    Abstract: Virulence factors (VFs) are key factors for microorganisms to establish defense mechanisms in the host and enhance their pathogenic potential. However, the spectrum of virulence factors in pig colon and feces, as well as the influence of dietary and genetic factors on them, remains unreported. In this study, we firstly revealed the diversity, abundance and distribution characteristics of VFs in the colonic contents of different breeds of pigs (Taoyuan, Xiangcun and Duroc pig) fed with different fiber levels by using a metagenomic analysis. The analysis resulted in the identification of 1,236 virulence factors, which could be grouped into 16 virulence features. Among these, Taoyuan pigs exhibited significantly higher levels of virulence factors compared to Duroc pigs. The high-fiber diet significantly reduced the abundance of certain virulence factor categories, including iron uptake systems ( FbpABC , HitABC ) and Ig protease categories in the colon, along with a noteworthy decrease in the relative abundance of plasmid categories in mobile genetic elements (MGEs). Further we examined VFs in feces using absolute quantification. The results showed that high-fiber diets reduce fecal excretion of VFs and that this effect is strongly influenced by MGEs and short-chain fatty acids (SCFAs). In vitro fermentation experiments confirmed that acetic acid (AA) led to a decrease in the relative abundance of VFs ( p & lt; 0.1). In conclusion, our findings reveal for the first time how fiber diet and genetic factors affect the distribution of VFs in pig colon contents and feces and their driving factors. This information provides valuable reference data to further improve food safety and animal health.
    Type of Medium: Online Resource
    ISSN: 2297-1769
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2834243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Microbiology Vol. 13 ( 2022-4-29)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 13 ( 2022-4-29)
    Abstract: Carbohydrates are the main source of energy in the diet, accounting for the largest proportion in the diets of humans and monogastric animals. Although recent progress has been made in the study of intestinal carbohydrate digestion in piglets, there is a lack of comprehensive study on the dynamic changes in intestinal carbohydrate digestion with age in the early growth stage of piglets. To fill in this gap of knowledge, we collected samples of the small intestine, pancreatic tissues, and colonic digesta from 42 piglets during newborn [day (d) 0], lactation (d 7, 14), weaning (d 21), and nursery (d 28, 35, and 42) stages. Intestinal and pancreatic tissues and colonic digesta were collected at necropsy and analyzed for morphology, digestive enzyme activities, short-chain fatty acids (SCFA), and microbial abundance. Villus height reached a maximum at 1 week (d 7) in the duodenum and jejunum ( P & lt;0.01), and a higher ratio of villus height to crypt depth and lactase activity were observed on d 0 and 7 ( P & lt; 0.001) compared to other ages. However, the sucrase and maltase activities were increased with piglets' age. Similar activities of sucrase and maltase were found in the small intestine. In addition, amylase, lipase, and protease activities were assayed in the pancreas. The activity of amylase increased with age, while lipase and protease decreased gradually from birth to weaning (d 21, 28) and then increased after weaning (d 35, 42). Compared with d 0, d 42 increased the abundance of Firmicutes and Bacteroidetes with a higher concentration of total SCFA ( P & lt; 0.001) and decreased the abundance of Proteobacteria , but weaning (d 21, 28) increased the abundance of Proteobacteria in the colon. These results indicate that with the increase in piglet age, the carbohydrate digestive function gradually increased, but weaning hindered the development of intestinal function. These results provide us with new insights into the healthy development of piglets' intestines, which may help us to better regulate the physiological health of piglets in the future.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...