GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Makino, Shinji  (2)
  • Natural Sciences  (2)
Material
Language
Years
Subjects(RVK)
RVK
  • 1
    In: Annals of the New York Academy of Sciences, Wiley, Vol. 1171, No. s1 ( 2009-09)
    Abstract: Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus , family Bunyaviridae , is a negative‐stranded RNA virus carrying a single‐stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis, or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon‐β mRNAs. Here we demonstrated that the NSs protein induced post‐transcriptional downregulation of dsRNA‐dependent protein kinase (PKR), to prevent phosphorylation of eIF2α and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts.
    Type of Medium: Online Resource
    ISSN: 0077-8923 , 1749-6632
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2009
    detail.hit.zdb_id: 2834079-6
    detail.hit.zdb_id: 211003-9
    detail.hit.zdb_id: 2071584-5
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 34 ( 2006-08-22), p. 12885-12890
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 34 ( 2006-08-22), p. 12885-12890
    Abstract: Severe acute respiratory syndrome (SARS) coronavirus (SCoV) causes a recently emerged human disease associated with pneumonia. The 5′ end two-thirds of the single-stranded positive-sense viral genomic RNA, gene 1, encodes 16 mature proteins. Expression of nsp1, the most N-terminal gene 1 protein, prevented Sendai virus-induced endogenous IFN-β mRNA accumulation without inhibiting dimerization of IFN regulatory factor 3, a protein that is essential for activation of the IFN-β promoter. Furthermore, nsp1 expression promoted degradation of expressed RNA transcripts and host endogenous mRNAs, leading to a strong host protein synthesis inhibition. SCoV replication also promoted degradation of expressed RNA transcripts and host mRNAs, suggesting that nsp1 exerted its mRNA destabilization function in infected cells. In contrast to nsp1-induced mRNA destablization, no degradation of the 28S and 18S rRNAs occurred in either nsp1-expressing cells or SCoV-infected cells. These data suggested that, in infected cells, nsp1 promotes host mRNA degradation and thereby suppresses host gene expression, including proteins involved in host innate immune functions. SCoV nsp1-mediated promotion of host mRNA degradation may play an important role in SCoV pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...