GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 2764-2764
    Abstract: Treatment of patients with triple-negative breast cancers (TNBCs) remains a major challenge for oncologists and alternative treatments to conventional chemotherapies are needed to improve their survival. The Wnt/beta-catenin signaling, recently reported to be activated in TNBCs, may represent an interesting pathway to target. We report that both LRP5 and LRP6 Wnt coreceptors are more strongly expressed in TNBCs than in other breast tumor subtypes. As very few studies have explored potential differences between LRP5 and LRP6, we investigated the effects of modulating specifically LRP5 or LRP6 expression on Wnt signaling, cell viability and tumorigenesis in HCC38 and MDA-MB-468 TNBC cells. We found that these two cell lines are more similar to TNBC biopsy specimens in terms of Wnt pathway gene expression profiles than any other tested cell line. Unlike LRP5, LRP6 was involved in activating the canonical Wnt pathway in response to Wnt3a. LRP5 knockdown induced caspase-dependent apoptosis, whereas LRP6 knockdown had no such effect. Importantly, LRP5-depleted cells were more sensitive to conventional chemotherapy than cells depleted of LRP6. The knockdown of LRP5 or LRP6 decreased tumorigenesis both in vitro and in vivo. Overall, these data suggest that the LRP5 and LRP6 coreceptors have different functions in TNBCs, with LRP5 playing a preponderant role in survival control. Our data suggest that both LRP5 and LRP6 are potential treatment targets in TNBCs, but that LRP5 may be the most useful target, given the impact of its depletion on cell survival as well as on the response to anti-cancer drugs. Citation Format: Sylvie Maubant, Virginie Maire, Bruno Tesson, Fariba Némati, David Gentien, Bérengère Marty-Prouvost, Stéphane Depil, Francisco Cruzalegui, Gordon Tucker, Sergio Roman-Roman, Thierry Dubois. The depletion of LRP5, unlike that of LRP6, promotes apoptosis in triple-negative breast cancer cells, making it an interesting therapeutic target. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2764. doi:10.1158/1538-7445.AM2014-2764
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2015
    In:  Cancer Research Vol. 75, No. 15_Supplement ( 2015-08-01), p. 41-41
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 41-41
    Abstract: The canonical Wnt/beta-catenin pathway has been shown to be activated in triple-negative breast cancer (TNBC). The activation of this pathway leads to the expression of specific target genes depending on the cell/tissue context. Here, we analyzed the transcriptome of two different TNBC cell lines to define a comprehensive list of Wnt target genes. The treatment of cells with Wnt3a for 6h up-regulated the expression (fold change & gt; 1.3) of 59 genes in MDA-MB-468 cells and 241 genes in HCC38 cells. Thirty genes were common to both cell lines. Beta-catenin may also be a transcriptional repressor and we found that 18 and 166 genes were down-regulated in response to Wnt3a treatment for 6h in MDA-MB-468 and HCC38 cells, respectively, of which six were common to both cell lines. Only half of the activated and the repressed transcripts have been previously described as Wnt target genes. Therefore, our study reveals 137 novel genes that may be positively regulated by Wnt3a and 104 novel genes that may be negatively regulated by Wnt3a. These genes are involved in the Wnt pathway itself, and also in TGF-beta, p53 and Hedgehog pathways. Thorough characterization of these novel potential Wnt target genes may reveal new regulators of the canonical Wnt pathway. The comparison of our list of Wnt target genes with those published in other cellular contexts confirms the notion that Wnt target genes are tissue-, cell line- and treatment-specific. Genes up-regulated in Wnt3a-stimulated cell lines were more strongly expressed in TNBC than in luminal A breast cancer samples. These genes were also overexpressed, but to a much lesser extent, in HER2+ and luminal B tumors. We identified 72 Wnt target genes higher expressed in TNBCs (17 with a fold change & gt;1.3) which may reflect the chronic activation of the canonical Wnt pathway that occurs in TNBC tumors. Citation Format: Sylvie Maubant, Bruno Tesson, Virginie Maire, Mengliang Ye, Guillem Rigaill, David Gentien, Francisco Cruzalegui, Gordon C. Tucker, Sergio Roman-Roman, Thierry Dubois. The Wnt3a targetome in triple-negative breast cancer cell lines. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 41. doi:10.1158/1538-7445.AM2015-41
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. B164-B164
    Abstract: Triple-negative breast cancer (TNBC) represents a subgroup of breast cancers (BC) associated with the most aggressive clinical behavior. No targeted therapy is currently available for the treatment of patients with TNBC. In the present study, we found that Protein Arginine Methyltransferase 1 (PRMT1) is overexpressed in TNBC at the mRNA level. At the protein level, PRMT1 was overexpressed in all breast cancer subtypes compared to normal breast tissue. The depletion of PRMT1 using siRNA in BC cell lines triggered apoptosis, reduced cell viability and the ability to form colonies in an anchorage-independent manner. Treatment with Furamidine, a new PRMT1-specific inhibitor, blocked proliferation specifically in BC cells, with no measurable effect in normal breast cells. Furamidine treatment of a TNBC patient-derived xenograft (PDX) model significantly slowed tumor growth. To address the cellular pathways regulated by PRMT1, we identified its protein partners by mass spectrometry and the transcriptomic changes following its depletion in TNBC cell lines. Interestingly, we found that PRMT1 directly activates key oncogenic pathways. Furthermore, we found a synergistic interaction between PRMT1 inhibitors and inhibitors for some of those pathways. Our results show that PRMT1 activity is necessary for breast cancer cell survival and oncogenic pathway activation. Our results point out PRMT1 as an emerging target for the treatment of BC. Citation Format: David C. Silvestre, Amelie Brisson, Bérengère Marty-Prouvost, David Gentien, Damarys Loew, Florent Dingli, Virginie Maire, Fariba Némati, Mengliang Ye, Didier Meseure, André Nicolas, Sergio Roman-Roman, Thierry Dubois. Identification and validation of PRMT1 as a therapeutic target in breast cancer. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr B164.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecular Oncology, Wiley, Vol. 17, No. 10 ( 2023-10), p. 2017-2028
    Abstract: Triple negative breast cancers (TNBCs) represent 15–20% of all breast cancers and are associated with higher recurrence and distant metastasis rate. Standard of care for early stage TNBC is anthracyclines combined with cyclophosphamide (AC) followed by taxanes, in the neo‐adjuvant or adjuvant setting. This work aimed to identify predictive biomarkers of AC response in patient‐derived xenograft (PDX) models of TNBC and to validate them in the clinical setting. By gene and protein expression analysis of 39 PDX with different responses to AC, we found that high expression of HORMAD1 was associated with better response to AC. Both gene and protein expression were associated with promoter hypomethylation. In a cohort of 526 breast cancer patients, HORMAD1 was overexpressed in 71% of TNBC. In a second cohort of 186 TNBC patients treated with AC, HORMAD1 expression was associated with longer metastasis‐free survival (MFS). In summary, HORMAD1 overexpression was predictive of an improved response to AC in PDX and is an independent prognostic factor in TNBC patients treated with AC.
    Type of Medium: Online Resource
    ISSN: 1574-7891 , 1878-0261
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2322586-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 12, No. 11_Supplement ( 2013-11-01), p. B233-B233
    Abstract: Introduction. Treatment of patients with triple-negative breast cancers (TNBCs) remains a major challenge for oncologists. Although they respond well to the current therapeutic strategies based on conventional chemotherapies, they represent a large proportion of breast cancer death due to a high recurrence rate. Alternative treatments are needed to improve survival of these patients. The Wnt/beta-catenin signaling, recently reported to be activated in TNBCs, may represent an interesting pathway to target. Methods. We analyzed mRNA, DNA and protein levels for the LRP5 and LRP6 Wnt coreceptors in our cohort of breast tumor biopsy specimens. We then identified which TNBC cell lines display the most similarity to TNBC tumors regarding the Wnt pathway status using a centroid approach. We investigated the effects of modulating LRP5 or LRP6 expression on Wnt signaling, cell viability and apoptosis. We evaluated the potential therapeutic value of targeting LRP5 and LRP6 in TNBCs, by performing depletion experiments and treating cells with a mixture of doxorubicin/cyclophosphamide. We also examined whether the depletion of LRP5 or LRP6 had an impact on tumorigenicicy in vitro, in soft-agar assays, and in vivo, in xenograft models. Results. Gene expression analyses revealed that both LRP5 and LRP6 Wnt coreceptors were more strongly expressed in TNBCs than in other breast tumor subtypes. HCC38 and MDA-MB-468 TNBC cells were more similar to TNBC biopsy specimens in terms of Wnt pathway gene expression profiles than any other tested cell line. Unlike LRP5, LRP6 was involved in activating the canonical Wnt pathway in response to Wnt3a. LRP5 knockdown induced caspase-dependent apoptosis, whereas LRP6 knockdown had no such effect. LRP5-depleted cells were also more sensitive to conventional chemotherapy than cells depleted of LRP6. The knockdown of LRP5 or LRP6 decreased tumorigenesis both in vitro and in vivo. Conclusions. These data indicate that the LRP5 and LRP6 have different functions in TNBCs, with LRP5 playing a preponderant role in survival control. Our data suggest that both coreceptors are potential treatment targets in TNBCs, but that LRP5 may be the most useful target, given the impact of its depletion on cell survival and the response to anti-cancer drugs. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):B233. Citation Format: Sylvie Maubant, Virginie Maire, Bruno Tesson, Fariba Némati, Aurélie Dumont, David Gentien, Bérengère Marty-Prouvost, Guillem Rigaill, Leanne De Koning, Anne Vincent-Salomon, Emmanuel Barillot, Didier Decaudin, Alain Pierré, Stéphane Depil, Francisco Cruzalegui, Gordon C. Tucker, Sergio Roman-Roman, Thierry Dubois. The depletion of LRP5, unlike that of LRP6, promotes apoptosis in triple-negative breast cancer cells, making it an interesting therapeutic target. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr B233.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Medicine, Wiley, Vol. 8, No. 5 ( 2019-05), p. 2414-2428
    Abstract: TNBC is a highly heterogeneous and aggressive breast cancer subtype associated with high relapse rates, and for which no targeted therapy yet exists. Protein arginine methyltransferase 5 (PRMT5), an enzyme which catalyzes the methylation of arginines on histone and non‐histone proteins, has recently emerged as a putative target for cancer therapy. Potent and specific PRMT5 inhibitors have been developed, but the therapeutic efficacy of PRMT5 targeting in TNBC has not yet been demonstrated. Here, we examine the expression of PRMT5 in a human breast cancer cohort obtained from the Institut Curie, and evaluate the therapeutic potential of pharmacological inhibition of PRMT5 in TNBC. We find that PRMT5 mRNA and protein are expressed at comparable levels in TNBC, luminal breast tumors, and healthy mammary tissues. However, immunohistochemistry analyses reveal that PRMT5 is differentially localized in TNBC compared to other breast cancer subtypes and to normal breast tissues. PRMT5 is heterogeneously expressed in TNBC and high PRMT5 expression correlates with poor prognosis within this breast cancer subtype. Using the small‐molecule inhibitor EPZ015666, we show that PRMT5 inhibition impairs cell proliferation in a subset of TNBC cell lines. PRMT5 inhibition triggers apoptosis, regulates cell cycle progression and decreases mammosphere formation. Furthermore, EPZ015666 administration to a patient‐derived xenograft model of TNBC significantly deters tumor progression. Finally, we reveal potentiation between EGFR and PRMT5 targeting, suggestive of a beneficial combination therapy. Our findings highlight a distinctive subcellular localization of PRMT5 in TNBC, and uphold PRMT5 targeting, alone or in combination, as a relevant treatment strategy for a subset of TNBC.
    Type of Medium: Online Resource
    ISSN: 2045-7634 , 2045-7634
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2659751-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Oncotarget, Impact Journals, LLC, Vol. 9, No. 32 ( 2018-04-27), p. 22586-22604
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 4373-4373
    Abstract: Background: Triple-negative breast cancer (TNBC) is associated with poor prognosis, only partial response to chemotherapy and lack of clinically established targeted therapies [1]. A deregulation of the Wnt signaling pathway has been described in breast cancers, particularly in TNBC [2–6] . Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6) serve as Wnt co-receptors for the canonical beta-catenin pathway. An overexpression of LRP6 has been reported to enhance Wnt signaling favoring in vitro cell proliferation and in vivo mammary gland hyperplasia and tumor growth [5,7,8]. LRP6 has been claimed to be a potential TNBC therapeutic target [5] . Material and Methods: RNA microarray analysis and reverse phase protein array were performed on 154 samples including biopsies of the various subclasses of breast cancer. MDA-MB-468 and HCC38 cell lines were defined as the most representative in vitro models of the Wnt pathway status found in TNBC biopsies. In order to study the functions of LRP5 or LRP6 in TNBC, we examined in these cell lines the effects of their depletions using RNAi technology on tumorigenesis and on the Wnt3a-induced signaling pathway. Results: Our transcriptomic and proteomic data revealed that both LRP5 and LRP6 are overexpressed in TNBC compared to the other breast cancer subtypes i.e. HER2+/ER-, luminal A and luminal B. Our in vitro studies indicated that the transcriptional activity of beta-catenin/Tcf was strongly reduced when LRP6 was silenced and to a lesser extend when LRP5 was depleted. In accordance with these results, the expression of AXIN2 and other newly identified Wnt target genes, was mainly down-regulated in cells silenced for LRP6. LRP5 and LRP6 knockdown impaired colony formation in soft agar and weakly decreased the number of mammospheres. The inhibition of cell viability observed after LRP5 depletion was the consequence of a programmed cell death as revealed by the increase of annexin V-positive cells, the activation of initiator and effector caspases (8,9,3/7) and the cleavage of poly(ADP-ribose) polymerase. On the contrary, LRP6 depletion inhibited cell viability without promoting apoptosis as reported by others [5]. Conclusions: Altogether our data demonstrate that in TNBC cell lines, LRP5 or LRP6 silencing has an impact on Wnt signaling, cancer stem cell-like activity, tumorigenic properties and cell viability. Most importantly, LRP5 silencing promotes apoptosis, suggesting that LRP5 could represent a promising therapeutic candidate to target in TNBC. Citation Format: Sylvie Maubant, Virginie Maire, Bruno Tesson, David Gentien, Bérengère Marty-Prouvost, Francisco Cruzalegui, Stéphane Depil, Gordon C. Tucker, Sergio Roman-Roman, Thierry Dubois. LRP5: a potential therapeutic target in triple-negative breast cancer. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 4373. doi:10.1158/1538-7445.AM2013-4373
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 3809-3809
    Abstract: Triple-negative breast cancer (TNBC) represents a subgroup of breast cancers associated with the most aggressive clinical behavior. No targeted therapy is currently available for the treatment of patients with TNBC. In the present study, we found that Protein Arginine Methyltransferase 1 (PRMT1) is overexpressed in TNBC at the mRNA level. At the protein level, PRMT1 is overexpressed in all breast cancer subtypes compared to normal breast tissues. The depletion of PRMT1 using siRNA in breast cancer cell lines triggered apoptosis, reduced cell viability and the ability to form colonies in an anchorage-independent manner. Treatment with a PRMT1 inhibitor blocked proliferation specifically in breast cancer cells, with no effect in normal breast cells. Importantly, the expression of PRMT1 is an indicator of prognosis and response to treatment specifically in TNBC patients. To address the cellular pathways regulated by PRMT1, we identified its protein partners by mass spectrometry and the transcriptomic changes following its depletion in TNBC cell lines. Interestingly, we found that PRMT1 directly activates key oncogenic pathways. Furthermore, we found a synergistic interaction between PRMT1 inhibitors and inhibitors for some of those pathways. We show that PRMT1 activity is necessary for breast cancer cell survival and oncogenic pathway activation. Altogether, our results point out PRMT1 as an emerging target for the treatment of breast cancers. Citation Format: David Silvestre, Amélie Brisson, Bérengère Marty-Prouvost, Mengliang Ye, Hélène Bonsang, Virginie Maire, Damarys Loew, David Gentien, Didier Meseure, Fabien Reyal, Gordon C. Tucker, Sergio Roman-Roman, Thierry Dubois. Protein arginine methyltransferase 1 (PRMT1) is a candidate therapeutic target for breast cancers. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 3809.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 2 ( 2013-01-15), p. 813-823
    Abstract: Breast cancers are composed of molecularly distinct subtypes with different clinical outcomes and responses to therapy. To discover potential therapeutic targets for the poor prognosis-associated triple-negative breast cancer (TNBC), gene expression profiling was carried out on a cohort of 130 breast cancer samples. Polo-like kinase 1 (PLK1) was found to be significantly overexpressed in TNBC compared with the other breast cancer subtypes. High PLK1 expression was confirmed by reverse phase protein and tissue microarrays. In triple-negative cell lines, RNAi-mediated PLK1 depletion or inhibition of PLK1 activity with a small molecule (BI-2536) induced an increase in phosphorylated H2AX, G2–M arrest, and apoptosis. A soft-agar colony assay showed that PLK1 silencing impaired clonogenic potential of TNBC cell lines. When cells were grown in extracellular matrix gels (Matrigel), and exposed to BI-2536, apoptosis was observed specifically in TNBC cancerous cells, and not in a normal cell line. When administrated as a single agent, the PLK1 inhibitor significantly impaired tumor growth in vivo in two xenografts models established from biopsies of patients with TNBC. Most importantly, the administration of BI-2536, in combination with doxorubicin + cyclophosphamide chemotherapy, led to a faster complete response compared with the chemotherapy treatment alone and prevented relapse, which is the major risk associated with TNBC. Altogether, our observations suggest PLK1 inhibition as an attractive therapeutic approach, in association with conventional chemotherapy, for the management of patients with TNBC. Cancer Res; 73(2); 813–23. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...