GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (7)
  • Maier, Elke  (7)
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2004
    In:  Journal of Bacteriology Vol. 186, No. 19 ( 2004-10), p. 6667-6670
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 186, No. 19 ( 2004-10), p. 6667-6670
    Abstract: Detergent extracts of cell envelopes of the gliding bacterium Herpetosiphon aurantiacus formed channels in lipid bilayers. Fast protein liquid chromatography across a HiTrap-Q cation-exchange column demonstrated that a 45-kDa protein forms the channel. The observation of a channel-forming protein suggests that Herpetosiphon aurantiacus Hp a2 has a permeability barrier on its surface.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2008
    In:  Journal of Bacteriology Vol. 190, No. 24 ( 2008-12-15), p. 7994-8002
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 190, No. 24 ( 2008-12-15), p. 7994-8002
    Abstract: Moraxella catarrhalis is a gram-negative respiratory pathogen that is an important causative agent for otitis media and exacerbations of chronic obstructive pulmonary disease. We have previously predicted the outer membrane protein M35 to be a general porin, and in the current study, we have investigated the function of M35 and its importance for survival of M. catarrhalis in vivo. Lipid bilayer experiments reveal that refolded M35 functions as a channel that is typical of gram-negative bacterial porins. M35 forms wide and water-filled channels with a single-channel conductance of about 1.25 nS in 1 M KCl solution and has only a small selectivity for cations over anions. When the in vitro growth characteristics of two M35 deletion mutant strains of M. catarrhalis were compared to the wild-type parent isolates, the growth of the mutant strains was inhibited only under nutrient-poor conditions. This growth defect could be eliminated by additional glutamic acid, but not additional aspartic acid, glycine, sucrose, or glucose. The mutant strains compensated for the lack of M35 by enhancing their uptake of glutamic acid, and this enhanced rate of glutamic acid uptake was attributed to the compensatory upregulation of a protein of approximately 40 kDa. M35 was also found to be essential for nasal colonization of mice, demonstrating that its presence is essential for survival of M. catarrhalis in vivo. These results suggest that M35 is a general porin that is necessary for the uptake of important energy sources by M. catarrhalis and that it is likely that M35 is an essential functional protein for in vivo colonization.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 183, No. 2 ( 2001-01-15), p. 800-803
    Abstract: The outer membrane of the thermophilic bacterium Thermus thermophilus was isolated using sucrose step gradient centrifugation. Its detergent extracts contained an ion-permeable channel with an extremely high single-channel conductance of 20 nS in 1 M KCl. The channel protein was purified by preparative sodium dodecyl sulfate (SDS)-polyacylamide gel electrophoresis. It has a high molecular mass of 185 kDa, and its channel-forming ability resists boiling in SDS for 10 min.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2001
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2000
    In:  Infection and Immunity Vol. 68, No. 8 ( 2000-08), p. 4566-4573
    In: Infection and Immunity, American Society for Microbiology, Vol. 68, No. 8 ( 2000-08), p. 4566-4573
    Abstract: The binary Clostridium botulinum C2 toxin consists of two separate proteins, the binding component C2II (80.5 kDa) and the actin-ADP-ribosylating enzyme component C2I (49.4 kDa). For its cytotoxic action, C2II binds to a cell membrane receptor and induces cell entry of C2I via receptor-mediated endocytosis. Here we studied the structure-function relationship of C2II by constructing truncated C2II proteins and producing polyclonal antisera against selective regions of C2II. An antibody raised against the C terminus (amino acids 592 to 721) of C2II inhibited binding of C2II to cells. The antibody prevented pore formation by C2II oligomers in artificial membranes but did not influence the properties of existing channels. To further define the region responsible for receptor binding, we constructed proteins with deletions in C2II; specifically, they lacked amino acid residues 592 to 721 and the 7 C-terminal amino acid residues. The truncated proteins still formed sodium dodecyl sulfate-stable oligomers but were unable to bind to cells. Our data indicate that the C terminus of C2II mediates binding of the protein to cells and that the 7 C-terminal amino acids are structurally important for receptor binding.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2000
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2007
    In:  Journal of Bacteriology Vol. 189, No. 3 ( 2007-02), p. 929-939
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 189, No. 3 ( 2007-02), p. 929-939
    Abstract: The Pseudomonas aeruginosa outer membrane is intrinsically impermeable to many classes of antibiotics, due in part to its relative lack of general uptake pathways. Instead, this organism relies on a large number of substrate-specific uptake porins. Included in this group are the 19 members of the OprD family, which are involved in the uptake of a diverse array of metabolites. One of these porins, OpdH, has been implicated in the uptake of cis -aconitate. Here we demonstrate that this porin may also enable P. aeruginosa to take up other tricarboxylates. Isocitrate and citrate strongly and specifically induced the opdH gene via a mechanism involving derepression by the putative two-component regulatory system PA0756-PA0757. Planar bilayer analysis of purified OpdH demonstrated that it was a channel-forming protein with a large single-channel conductance (230 pS in 1 M KCl; 10-fold higher than that of OprD); however, we were unable to demonstrate the presence of a tricarboxylate binding site within the channel. Thus, these data suggest that the requirement for OpdH for efficient growth on tricarboxylates was likely due to the specific expression of this large-channel porin under particular growth conditions.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2007
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2010
    In:  Journal of Bacteriology Vol. 192, No. 15 ( 2010-08), p. 4001-4011
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 192, No. 15 ( 2010-08), p. 4001-4011
    Abstract: Cytolysin A (known as ClyA, HlyE, and SheA) is a cytolytic pore-forming protein toxin found in several Escherichia coli and Salmonella enterica strains. The structure of its water-soluble monomeric form and that of dodecameric ClyA pores is known, but the mechanisms of ClyA export from bacterial cells and of pore assembly are only partially understood. Here we used site-directed mutagenesis to study the importance of different regions of the E. coli ClyA protein for export and activity. The data indicate that ClyA translocation to the periplasm requires several protein segments located closely adjacent to each other in the “tail” domain of the ClyA monomer, namely, the N- and C-terminal regions and the hydrophobic sequence ranging from residues 89 to 101. Deletion of most of the “head” domain of the monomer (residues 181 to 203), on the other hand, did not strongly affect ClyA secretion, suggesting that the tail domain plays a particular role in export. Furthermore, we found that the N-terminal amphipathic helix αA1 of ClyA is crucial for the formation and the properties of the transmembrane channel, and hence for hemolytic activity. Several mutations affecting the C-terminal helix αG, the “β-tongue” region in the head domain, or the hydrophobic region in the tail domain of the ClyA monomer strongly impaired the hemolytic activity and reduced the activity toward planar lipid bilayer membranes but did not totally prevent formation of wild-type-like channels in these artificial membranes. The latter regions thus apparently promote membrane interaction without being directly required for pore formation in a lipid bilayer.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 2003
    In:  Journal of Bacteriology Vol. 185, No. 18 ( 2003-09-15), p. 5491-5499
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 185, No. 18 ( 2003-09-15), p. 5491-5499
    Abstract: We report studies of the subcellular localization of the ClyA cytotoxic protein and of mutations causing defective translocation to the periplasm in Escherichia coli . The ability of ClyA to translocate to the periplasm was abolished in deletion mutants lacking the last 23 or 11 amino acid residues of the C-terminal region. A naturally occurring ClyA variant lacking four residues (183 to 186) in a hydrophobic subdomain was retained mainly in the cytosolic fraction. These mutant proteins displayed an inhibiting effect on the expression of the hemolytic phenotype of wild-type ClyA. Studies in vitro with purified mutant ClyA proteins revealed that they were defective in formation of pore assemblies and that their activity in hemolysis assays and in single-channel conductance tests was at least 10-fold lower than that of the wild-type ClyA. Tests with combinations of the purified proteins indicated that mutant and wild-type ClyA interacted and that formation of heteromeric assemblies affected the pore-forming activity of the wild-type protein. The observed protein-protein interactions were consistent with, and provided a molecular explanation for, the dominant negative feature of the mutant ClyA variants.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2003
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...