GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Scientific Reports Vol. 13, No. 1 ( 2023-07-04)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2023-07-04)
    Abstract: Radon ( 222 Rn) and its progeny are responsible for half of the annual dose from natural radiation and the most frequent cause for lung cancer induction after smoking. During inhalation, progeny nuclides accumulate in the respiratory tract while most of the radon gas is exhaled. The decay of progeny nuclides in the lung together with the high radiosensitivity of this tissue lead to equivalent doses implying a significant cancer risk. Here, we use gamma spectroscopy to measure the attachment of radon progeny on an air-ventilated filter system within a radon enriched atmosphere, mimicking the respiratory tract. A mathematical model was developed to describe the measured time-dependent activities of radon progeny on the filter system. We verified a linear relation between the ambient radon activity concentration during exposure and the amount of decay products on the filter system. The measured activities on the filters and its mathematical description are in good agreement. The developed experimental set-up can thus serve to further investigate the deposition of radon progeny in the respiratory tract under varying conditions for determination of dose conversion factors in radiation protection, which we demonstrate by deriving dose estimations in mouse lung.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cells, MDPI AG, Vol. 11, No. 4 ( 2022-02-16), p. 689-
    Abstract: Radon treatment is used as an established therapy option in chronic painful inflammatory diseases. While analgesic effects are well described, little is known about the underlying molecular effects. Among the suspected mechanisms are modulations of the anti-oxidative and the immune system. Therefore, we aimed for the first time to examine the beneficial effects of radon exposure on clinical outcome as well as the underlying mechanisms by utilizing a holistic approach in a controlled environment of a radon chamber with an animal model: K/BxN serum-induced arthritic mice as well as isolated cells were exposed to sham or radon irradiation. The effects on the anti-oxidative and the immune system were analyzed by flow-cytometry, qPCR or ELISA. We found a significantly improved clinical disease progression score in the mice, alongside significant increase of peripheral blood B cells and IL-5. No significant alterations were visible in the anti-oxidative system or regarding cell death. We conclude that neither cell death nor anti-oxidative systems are responsible for the beneficial effects of radon exposure in our preclinical model. Rather, radon slightly affects the immune system. However, more research is still needed in order to fully understand radon-mediated effects and to carry out reasonable risk-benefit considerations.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2023-08-01)
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: mSystems, American Society for Microbiology, Vol. 6, No. 3 ( 2021-06-29)
    Abstract: Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria . As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on “ Candidatus Thiosymbion oneisti.” Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of 13 C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that “ Ca. T. oneisti” may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of “ Candidatus Thiosymbion oneisti,” a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Progress in Photovoltaics: Research and Applications, Wiley, Vol. 29, No. 8 ( 2021-08), p. 920-935
    Abstract: Automated inspection plays an important role in monitoring large‐scale photovoltaic power plants. Commonly, electroluminescense measurements are used to identify various types of defects on solar modules, but have not been used to determine the power of a module. However, knowledge of the power at maximum power point is important as well, since drops in the power of a single module can affect the performance of an entire string. By now, this is commonly determined by measurements that require to discontact or even dismount the module, rendering a regular inspection of individual modules infeasible. In this work, we bridge the gap between electroluminescense measurements and the power determination of a module. We compile a large dataset of 719 electroluminescense measurements of modules at various stages of degradation, especially cell cracks and fractures, and the corresponding power at maximum power point. Here, we focus on inactive regions and cracks as the predominant type of defect. We set up a baseline regression model to predict the power from electroluminescense measurements with a mean absolute error (MAE) of 9.0 ± 8.4W P (4.0 ± 3.7%). Then, we show that deep learning can be used to train a model that performs significantly better (7.3 ± 6.5W P or 3.2 ± 2.7%) and propose a variant of class activation maps to obtain the per cell power loss, as predicted by the model. With this work, we aim to open a new research topic. Therefore, we publicly release the dataset, the code, and trained models to empower other researchers to compare against our results. Finally, we present a thorough evaluation of certain boundary conditions like the dataset size and an automated preprocessing pipeline for on‐site measurements showing multiple modules at once.
    Type of Medium: Online Resource
    ISSN: 1062-7995 , 1099-159X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2023295-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Vol. 416 ( 2018-02), p. 119-127
    In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Elsevier BV, Vol. 416 ( 2018-02), p. 119-127
    Type of Medium: Online Resource
    ISSN: 0168-583X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 1466524-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Environmental Research and Public Health Vol. 18, No. 9 ( 2021-04-22), p. 4454-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 18, No. 9 ( 2021-04-22), p. 4454-
    Abstract: Radon is pervasive in our environment and the second leading cause of lung cancer induction after smoking. Therefore, the measurement of radon activity concentrations in homes is important. The use of charcoal is an easy and cost-efficient method for this purpose, as radon can bind to charcoal via Van der Waals interaction. Admittedly, there are potential influencing factors during exposure that can distort the results and need to be investigated. Consequently, charcoal was exposed in a radon chamber at different parameters. Afterward, the activity of the radon decay products 214Pb and 214Bi was measured and extrapolated to the initial radon activity in the sample. After an exposure of 1 h, around 94% of the maximum value was attained and used as a limit for the subsequent exposure time. Charcoal was exposed at differing humidity ranging from 5 to 94%, but no influence on radon adsorption could be detected. If the samples were not sealed after exposure, radon desorbed with an effective half-life of around 31 h. There is also a strong dependence of radon uptake on the chemical structure of the recipient material, which is interesting for biological materials or diffusion barriers as this determines accumulation and transport.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  International Journal of Environmental Research and Public Health Vol. 20, No. 3 ( 2023-01-18), p. 1773-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 20, No. 3 ( 2023-01-18), p. 1773-
    Abstract: Radon, a naturally occurring radioactive noble gas, contributes significantly to lung cancer when incorporated from our natural environment. However, despite having unknown underlying mechanisms, radon is also used for therapeutic purposes to treat inflammatory diseases such as rheumatoid arthritis. Data on the distribution and accumulation of radon in different tissues represent an important factor in dose determination for risk estimation, the explanation of potential therapeutic effects and the calculation of doses to different tissues using biokinetic dosimetry models. In this paper, radon’s solubility in bones, muscle tissue, adipose tissue, bone marrow, blood, a dissolved gelatin and oleic acid were determined. In analogy to current radon use in therapies, samples were exposed to radon gas for 1 h using two exposure protocols combined with established γ-spectroscopic measurements. Solubility data varied over two orders of magnitude, with the lowest values from the dissolved gelatin and muscle tissue; radon’s solubility in flat bones, blood and adipose tissue was one order of magnitude higher. The highest values for radon solubility were measured in bone marrow and oleic acid. The data for long bones as well as bone marrow varied significantly. The radon solubility in the blood suggested a radon distribution within the body that occurred via blood flow, reaching organs and tissues that were not in direct contact with radon gas during therapy. Tissues with similar compositions were expected to reveal similar radon solubilities; however, yellow bone marrow and adipose tissue showed differences in solubility even though their chemical composition is nearly the same—indicating that interactions on the microscopic scale between radon and the solvent might be important. We found high solubility in bone marrow—where sensitive hematopoietic cells are located—and in adipose tissue, where the biological impact needs to be further elucidated.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 18 ( 2022-09-09), p. 11337-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 18 ( 2022-09-09), p. 11337-
    Abstract: The radioactive noble gas radon and its short-living progeny are inhaled during respiration, depositing their decay energies in the lungs. These progeny are considered responsible for more than 95% of the total effective dose and are, together with radon, classified as carcinogenic for lung cancer. Consequently, filtration of the progeny could reduce the dose to the lungs. In our study, we investigated the filtration properties of FFP2 versus surgical masks (II R) for radon and its decay products. The masks were attached to a measurement device, which enabled determination of the size distribution of radon progeny, ranging from unattached to clustered progeny. In parallel, it measured the radon activity concentration during experiments. By comparing background measurements without mask and experiments with masks, the percentage of retained unattached radon progeny was determined for FFP2 (98.8 ± 0.6%) and II R masks (98.4 ± 0.7%). For clustered progeny, the retained fraction was 85.2 ± 18.1% for FFP2 and 79.5 ± 22.1% for II R masks while radon was not filtered. We can show that masks are effective in filtering radon progeny and thus are capable of reducing the total effective dose to the lungs.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Progress in Photovoltaics: Research and Applications Vol. 30, No. 6 ( 2022-06), p. 597-614
    In: Progress in Photovoltaics: Research and Applications, Wiley, Vol. 30, No. 6 ( 2022-06), p. 597-614
    Abstract: Increasing deployment of photovoltaic (PV) plants requires methods for automatic detection of faulty PV modules in modalities, such as infrared (IR) images. Recently, deep learning has become popular for this. However, related works typically sample train and test data from the same distribution ignoring the presence of domain shift between data of different PV plants. Instead, we frame fault detection as more realistic unsupervised domain adaptation problem where we train on labeled data of one source PV plant and make predictions on another target plant. We train a ResNet‐34 convolutional neural network with a supervised contrastive loss, on top of which we employ a k ‐nearest neighbor classifier to detect anomalies. Our method achieves a satisfactory area under the receiver operating characteristic (AUROC) of 73.3% to 96.6% on nine combinations of four source and target datasets with 2.92 million IR images of which 8.5% are anomalous. It even outperforms a binary cross‐entropy classifier in some cases. With a fixed decision threshold, this results in 79.4% and 77.1% correctly classified normal and anomalous images, respectively. Most misclassified anomalies are of low severity, such as hot diodes and small hot spots. Our method is insensitive to hyperparameter settings, converges quickly, and reliably detects unknown types of anomalies making it well suited for practice. Possible uses are in automatic PV plant inspection systems or to streamline manual labeling of IR datasets by filtering out normal images. Furthermore, our work serves the community with a more realistic view on PV module fault detection using unsupervised domain adaptation to develop more performant methods with favorable generalization capabilities.
    Type of Medium: Online Resource
    ISSN: 1062-7995 , 1099-159X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2023295-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...