GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
  • Macklem, Peter T.  (2)
Material
Publisher
  • American Physiological Society  (2)
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 1997
    In:  Journal of Applied Physiology Vol. 83, No. 4 ( 1997-10-01), p. 1256-1269
    In: Journal of Applied Physiology, American Physiological Society, Vol. 83, No. 4 ( 1997-10-01), p. 1256-1269
    Abstract: Aliverti, A., S. J. Cala, R. Duranti, G. Ferrigno, C. M. Kenyon, A. Pedotti, G. Scano, P. Sliwinski, Peter T. Macklem, and S. Yan. Human respiratory muscle actions and control during exercise. J. Appl. Physiol. 83(4): 1256–1269, 1997.—We measured pressures and power of diaphragm, rib cage, and abdominal muscles during quiet breathing (QB) and exercise at 0, 30, 50, and 70% maximum workload (W˙max) in five men. By three-dimensional tracking of 86 chest wall markers, we calculated the volumes of lung- and diaphragm-apposed rib cage compartments (Vrc,p and Vrc,a, respectively) and the abdomen (Vab). End-inspiratory lung volume increased with percentage of W˙max as a result of an increase in Vrc,p and Vrc,a. End-expiratory lung volume decreased as a result of a decrease in Vab. ΔVrc,a/ΔVab was constant and independent ofW˙max. Thus we used ΔVab/time as an index of diaphragm velocity of shortening. From QB to 70%W˙max, diaphragmatic pressure (Pdi) increased ∼2-fold, diaphragm velocity of shortening 6.5-fold, and diaphragm workload 13-fold. Abdominal muscle pressure was ∼0 during QB but was equal to and 180° out of phase with rib cage muscle pressure at all percent W˙max. Rib cage muscle pressure and abdominal muscle pressure were greater than Pdi, but the ratios of these pressures were constant. There was a gradual inspiratory relaxation of abdominal muscles, causing abdominal pressure to fall, which minimized Pdi and decreased the expiratory action of the abdominal muscles on Vrc,a gradually, minimizing rib cage distortions. We conclude that from QB to 0% W˙max there is a switch in respiratory muscle control, with immediate recruitment of rib cage and abdominal muscles. Thereafter, a simple mechanism that increases drive equally to all three muscle groups, with drive to abdominal and rib cage muscles 180° out of phase, allows the diaphragm to contract quasi-isotonically and act as a flow generator, while rib cage and abdominal muscles develop the pressures to displace the rib cage and abdomen, respectively. This acts to equalize the pressures acting on both rib cage compartments, minimizing rib cage distortion .
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1997
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 1997
    In:  Journal of Applied Physiology Vol. 83, No. 4 ( 1997-10-01), p. 1242-1255
    In: Journal of Applied Physiology, American Physiological Society, Vol. 83, No. 4 ( 1997-10-01), p. 1242-1255
    Abstract: Kenyon, C. M., S. J. Cala, S. Yan, A. Aliverti, G. Scano, R. Duranti, A. Pedotti, and Peter T. Macklem. Rib cage mechanics during quiet breathing and exercise in humans. J. Appl. Physiol. 83(4): 1242–1255, 1997.—During exercise, large pleural, abdominal, and transdiaphragmatic pressure swings might produce substantial rib cage (RC) distortions. We used a three-compartment chest wall model ( J. Appl. Physiol. 72: 1338–1347, 1992) to measure distortions of lung- and diaphragm-apposed RC compartments (RCp and RCa) along with pleural and abdominal pressures in five normal men. RCp and RCa volumes were calculated from three-dimensional locations of 86 markers on the chest wall, and the undistorted (relaxation) RC configuration was measured. Compliances of RCp and RCa measured during phrenic stimulation against a closed airway were 20 and 0%, respectively, of their values during relaxation. There was marked RC distortion. Thus nonuniform distribution of pressures distorts the RC and markedly stiffens it. However, during steady-state ergometer exercise at 0, 30, 50, and 70% of maximum workload, RC distortions were small because of a coordinated action of respiratory muscles, so that net pressures acting on RCp and RCa were nearly the same throughout the respiratory cycle. This maximizes RC compliance and minimizes the work of RC displacement. During quiet breathing, plots of RCa volume vs. abdominal pressure were to the right of the relaxation curve, indicating an expiratory action on RCa. We attribute this to passive stretching of abdominal muscles, which more than counterbalances the insertional component of transdiaphragmatic pressure.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1997
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...