GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MacLean, Neil  (14)
  • 2015-2019  (14)
  • Medicine  (14)
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1364-1364
    Abstract: Recent studies have demonstrated the therapeutic potential of targeting BRD2, BRD3 and BRD4 in hematological malignancies including AML. Here, we report a novel orally bioavailable BRD inhibitor, FV-281, that displays preclinical efficacy in AML in vitro and in vivo. In a binding screen assay of 32 bromodomains (BromoScanTM), FV-281 selectively bound BRD2, BRD3 and BRD4 with Kd values of 2.7 to 7.3 nM and was 2-5 fold more potent than the leading bromodomain inhibitor, OTX015. In AML cell lines (OCI-AML2, Tex, HL-60 and MV4-11), FV-281 reduced cell growth and viability after 72 hour incubation with IC50 values 〈 50 nM and was 6-fold more potent than OTX015. FV-281 was not cytotoxic to normal hematopoietic cells (n=4) with all IC50 values 〉 10 µM. In contrast, FV-281 induced cell death as measured by Annexin V/PI staining in 3 of 4 primary AML samples with IC50values 〈 850 nM. Within 4 hours of incubation with FV-281, c-Myc mRNA and protein level in OCI-AML2 cells were reduced by 〉 95% and 〉 80%, respectively. Following FV-281 washout, c-Myc protein expression returned to baseline within 20 hours with no loss of cell viability observed. Thus, the FV-281 is a reversible bromodomain inhibitor and sustained target inhibition is required to induce cell death. Likewise, after 6 and 48 hours of incubation with OCI-AML2 cells, FV-281 reduced Bcl-2 mRNA and protein level by 〉 60% and 〉 90%, respectively. To assess in vivo efficacy and toxicity, MV4-11 AML cells were engrafted subcutaneously in NOD-SCID mice (n=10). Once tumors were palpable, mice were treated with FV-281 orally (30mg/kg/d x 2 weeks) or vehicle control. FV-281 suppressed tumor growth without evidence of overt toxicity. In addition, primary AML cells were engrafted into the femurs of NOD-SCID mice (n=10). Three weeks after implantation, mice were treated with FV-281 orally (30mg/kg, 5 of 7 days, x 4 weeks) or vehicle control. FV-281 decreased AML engraftment in the injected and non-injected femur without evidence of overt toxicity (% human CD45+/CD19-/CD33+ in non-injected femur treated vs control: 20% vs 60%, p 〈 0.0001). Thus, FV-281 is a novel oral reversible bromodomain inhibitor with significant in vivo activity in murine models of AML. These data support evaluation of this agent in upcoming phase I clinical trials. Disclosures Wang: Fluorinov Pharma Inc.: Employment. Dove:Fluorinov Pharma Inc.: Employment. Hadri:Fluorinov Pharma Inc.: Employment. O'Neill:Fluorinov Pharma Inc.: Employment. Slassi:Fluorinov Pharma Inc.: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 729-729
    Abstract: Acute myeloid leukemia (AML) cells and stem cells have unique mitochondrial characteristics with an increased reliance on oxidative phosphorylation (OXPHOS). To identify new biological vulnerabilities in the mitochondrial proteome of AML cells, we conducted an shRNA screen and identified neurolysin (NLN), a zinc metalloprotease whose mitochondrial function is not well understood and whose role in AML has not been previously reported. To begin our investigation into the role of NLN in AML, we analyzed NLN gene expression in a database of 536 AML and 73 normal bone marrow samples. NLN was overexpressed in 41% of AML samples. Overexpression of NLN in primary AML cells compared to normal hematopoietic cells was confirmed by immunoblotting. To validate the results of the screen and to determine whether NLN is required for AML growth and viability, we knocked down NLN in the leukemia cell lines OCI-AML2, MV4-11, NB4, and TEX with shRNA. NLN knockdown reduced leukemia growth and viability by 50-70%. Moreover, knockdown of NLN in AML cells reduced the clonogenic growth of leukemic cells in vitro and the engraftment of AML cells into mouse marrow after five weeks by up to 80% and 85%, respectively. The mitochondrial function of NLN is largely unknown, so we identified NLN's mitochondrial protein interactors in T-REx HEK293 cells using proximity-dependent biotin labeling (BioID) coupled with mass spectrometry (MS). This screen identified 73 mitochondrial proteins that preferentially interacted with NLN and were enriched for functions including respiratory chain complex assembly, respiratory electron transport, and mitochondrion organization. Therefore, we assessed the effects of NLN knockdown on OXPHOS. NLN knockdown reduced basal and maximal oxygen consumption, but there were no changes in the levels of individual respiratory chain complex subunits. To understand how NLN influences OXPHOS, we examined the formation of respiratory chain supercomplexes (RCS). Respiratory chain complexes I, III, and IV assemble into higher order quaternary structures called RCS, which promote efficient oxidative metabolism. NLN knockdown significantly impaired RCS formation in T-REx HEK293, OCI-AML2, and NB4 cells, which was rescued by overexpressing wild-type shRNA-resistant NLN. RCS have not been previously studied in leukemia. Therefore, we analyzed their levels in primary AML patient samples and normal hematopoietic cells. RCS assembly was increased in a subset of AML patient samples and positively correlated with NLN protein expression (R2 = 0.83, p & lt; 0.05), suggesting that NLN mediates RCS assembly in AML. To investigate how NLN may be regulating RCS assembly, we analyzed our BioID results to identify NLN interactors that are known regulators of supercomplex formation. Among the top interactors was the known RCS regulator, LETM1. Knockdown of NLN in AML cells impaired LETM1 assembly. Of note, knockdown of LETM1 also reduced growth and oxygen consumption of AML cells. As a chemical approach to evaluate the effects of NLN inhibition on AML cells, we used the allosteric NLN inhibitor R2, (3-[(2S)-1-[(3R)-3-(2-Chlorophenyl)-2-(2-fluorophenyl)pyrazolidin-1-yl]-1-oxopropan-2-yl] -1-(adamantan-2-yl)urea), whose anti-cancer effects have not been previously reported. R2 reduced viability of AML cells, as well as two primary AML culture models, 8227 and 130578. R2 impaired RCS formation in OCI-AML2, NB4, 8227, and primary AML cells. Moreover, R2 reduced the CD34+CD38- stem cell enriched population in 8227 cells, reduced LETM1 complex assembly, and impaired OXPHOS in OCI-AML2 and 8227 cells. Finally, we assessed the effects of inhibiting NLN in mice engrafted with primary AML and normal hematopoietic cells in vivo. Treatment of mice with R2 reduced the leukemic burden in these mice without toxicity. Moreover, inhibiting NLN targeted the AML stem cells as evidenced by reduced engraftment in secondary experiments. In contrast, inhibiting NLN did not reduce the engraftment of normal hematopoietic cells. Collectively, these results demonstrate that inhibition of NLN preferentially targets AML cells and stem cells as compared to normal hematopoietic cells. In summary, we defined a novel role for NLN in RCS formation. We show that RCS are necessary for oxidative metabolism in AML and highlight NLN inhibition as a potential therapeutic strategy. Disclosures Minden: Trillium Therapetuics: Other: licensing agreement. Chan:Agios: Honoraria; AbbVie Pharmaceuticals: Research Funding; Celgene: Honoraria, Research Funding. Schimmer:Medivir Pharmaceuticals: Research Funding; Novartis Pharmaceuticals: Consultancy; Jazz Pharmaceuticals: Consultancy; Otsuka Pharmaceuticals: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 130, No. Suppl_1 ( 2017-12-07), p. 814-814
    Abstract: Introduction: Ubiquitin-like Modifier Activating Enzyme 1 (UBA1; UAE) is the initiating enzyme in the ubiquitylation cascade in which proteins are tagged with ubiquitin moieties to regulate their degradation or function. Compared to normal hematopoietic cells, AML cell lines and primary AML cells have equal levels of UBA1 protein, but increased requirement for this enzyme. TAK-243 is a potent and selective inhibitor of UBA1 and we determined the preclinical activity, biological effects and mechanisms of resistance to the drug in AML. Results: TAK-243 reduced growth and viability of human AML cell lines (OCI-AML2, TEX, U937 and NB4) in a concentration- and time-dependent manner with IC50's ranging from 15-40 nM after treatment for 48 hours. In primary AML samples, most (n=18/21) were sensitive to TAK-243 with an IC50 & lt;75 nM at 48 hours of incubation. These samples included patients with high-risk cytogenetics, FLT3 mutations, and patients refractory to induction chemotherapy. We also compared the effects of TAK-243 on primary AML cells (n=6) and normal hematopoietic cells (n=6) and demonstrated that TAK-243 preferentially inhibited the clonogenic growth of AML cells over normal (19-fold reduction CFU-leukemia vs CFU-GM (normal), p ≤ 0.01). Binding of TAK-243 to UBA1 and related E1 enzymes was measured in intact AML cells using the cellular thermal shift assay (CETSA). In AML cell lines and primary AML samples, TAK-243 bound UBA1 at concentrations associated with cell death, but bound other E1 enzymes UBA3 and UBA6 only at much higher concentrations. Next, we evaluated the biological effects of UBA1 inhibition by TAK-243. At concentrations associated with cell death, TAK-243 decreased the abundance of poly- and mono-ubiquitylated proteins in OCI-AML2 cells and primary AML samples. In addition, TAK-243 treatment increased PERK phosphorylation, CHOP, XBP1s and ATF4 which are markers of proteotoxic stress and unfolded protein response. TAK-243 inhibited DNA double strand break (DSB) repair as evidenced by reduced recruitment of 53BP1 to DSBs and sustained γH2AX foci after 3 Gy of irradiation. We assessed the preclinical efficacy and toxicity of TAK-243 in mouse models of AML. OCI-AML2 cells were injected subcutaneously (sc) into SCID mice, and when tumors were palpable, mice were treated with TAK-243 (20 mg/kg sc twice weekly). TAK-243 significantly delayed tumor growth in mice (T/C=0.02) with no toxicity as evidenced by no changes in mouse body weight, serum chemistry, or organ histology. In tumors and organs isolated from the above treated mice, TAK-243 preferentially reduced levels of mono- and poly-ubiquitylated proteins in tumors over normal tissues. As an additional model, primary AML cells from 2 patients were injected into the femurs of NOD-SCID mice. Two weeks after injection, mice were treated with TAK-243 (20 mg/kg sc twice weekly). After 3 weeks of treatment, mice were sacrificed, and AML engraftment in the non-injected femur was measured by flow cytometry. TAK-243 reduced primary AML tumor burden in both tested samples without toxicity. Using secondary transplantations, we demonstrated that TAK-243 had targeted the leukemic stem cells. To understand mechanisms of resistance to TAK-243, we selected a population of TAK-243-resistant OCI-AML2 by culturing cells with increasing concentrations of the drug. Persisting cells were 33-fold more resistant to TAK-243 compared to wild-type cells (IC50 757 vs 23 nM), but had a normal rate of proliferation and remained equally sensitive to bortezomib, daunorubicin, mitoxantrone and the NEDD8-activating enzyme inhibitor pevonedistat. Using CETSA, we showed reduced binding of TAK-243 to UBA1 in the resistant cells. We sequenced UBA1 exons 12-16 and 23-24 that span the adenylation domain. Resistant cells had a missense mutation in exon 16 resulting in substitution of tyrosine with cysteine at codon 583 (Y583C). Y583 in human UBA1 corresponds to Y551 in yeast Uba1, which makes a favorable interaction with TAK-243 in its Uba1 binding site. Therefore, Y583C substitution is predicted to interfere with TAK-243 binding to UBA1. Conclusions: TAK-243 is a potent and selective UBA1 inhibitor that displays preferential activity towards AML cells over normal hematopoietic cells. Acquired mutations affect drug binding and may be a clinically relevant mechanism of resistance. These data support conducting a clinical trial of TAK-243 in patients with AML. Disclosures Hyer: Takeda Pharmaceuticals International Co.: Employment. Berger: Takeda Pharmaceuticals International Co.: Employment. Traore: Takeda Pharmaceuticals International Co.: Employment. Sintchak: Takeda Pharmaceuticals International Co.: Employment. Milhollen: Takeda Pharmaceuticals International Co.: Employment. Schimmer: Takeda Pharmaceuticals: Research Funding; Medivir: Research Funding; Novartis Pharmaceuticals: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1573-1573
    Abstract: Mitochondrial DNA (mtDNA) replication requires adequate nucleotide pools from the mitochondria and cytoplasm to support DNA biosynthesis. Gene expression profiling of 542 AML patient samples (GSE13159) demonstrated that 55% of AML patients had upregulated mtDNA biosynthesis pathway expression compared to 73 normal hematopoietic cells (mononuclear cells isolated from peripheral blood and bone marrow). We also identified upregulation of pathways which support mitochondrial nucleotide pools, which include mitochondrial nucleotide transporters and a subset of cytoplasmic nucleotide salvage enzymes, which phosphorylate nucleosides to nucleotides. Upregulation of nucleoside kinases in a subset of primary AML samples compared to normal hematopoietic progenitor cells (normal G-CSF (granulocyte-colony stimulating factor) mobilized peripheral blood stem cells (PBSC's)) was confirmed by immunoblotting. These results suggest that AML cells import cytoplasmic nucleotides to support mitochondrial DNA biogenesis. To determine if cytoplasmic nucleoside kinases regulate mtDNA content, we knocked down nucleoside kinases in AML cells. Partial target knockdown of DCK (deoxycytidine kinase) and CMPK1 (cytidine/uridine monophosphate kinase 1) reduced mtDNA content (60+8%, and 62+13%, respectively compared to controls, 5 and 7 days post-shRNA transduction), indicating a role in mtDNA biogenesis. As expected, knockdown of mtDNA replication factors POLG and TFAM reduced mtDNA content in AML cells. The cytidine nucleoside analog, 2'3'-dideoxycytidine (ddC) is activated by DCK and CMPK1 to produce its triphosphate form, ddC-triphosphate (ddC-TP). To assess nucleoside kinase activity, primary AML and normal hematopoietic cells were treated with ddC and total levels of ddC and ddC-TP were measured by mass spectrometry. Levels of ddC did not differ between AML and normal, but ddC-TP levels was increased in AML samples 〉 7-fold compared to normal (p 〈 0.05, one-way ANOVA). Previously we and others demonstrated that AML cells and stem cells have increased mitochondrial biogenesis and reliance on oxidative phosphorylation due to decreased spare reserve capacity and an inability to upregulate glycolysis. ddC-TP inhibits the sole mtDNA polymerase POLG, but not nuclear DNA polymerases. Given the increased activity of nucleoside kinases in AML cells over normal, we examined the effects of ddC treatment on mtDNA content and cellular bioenergetics. AML and normal cells were treated with increasing concentrations of ddC. At increasing times after treatment, ddC depleted mtDNA levels 〉 85% at 0.5 uM, 3 day treatment in OCI-AML2 and TEX cells as assessed by qPCR. ddC decreased protein expression of mtDNA encoded electron transport chain (ETC) subunits COXI and COX II, but not nuclear encoded subunit COXIV) and reduced basal oxygen consumption. ddC also decreased proliferation of AML cell lines (OCI-AML2, TEX, HL-60, K562) ( 〉 95% reduction at 0.5uM, 10 days). Knockdown of DCK abrogated the effects of ddC on AML cell proliferation. We next examined the effects of ddC in primary human leukemia cells (AML = 7, CML blast crisis = 1, CMML-2 = 1) and normal hematopoietic progenitor cells (n=8). ddC preferentially inhibited mtDNA biosynthesis and reduced viability in a subset of primary cells (6 of 9 AML) compared to normal PBSC's (n=8). Sensitivity to ddC positively correlated with mtDNA depletion. Finally, we evaluated the efficacy and toxicity of ddC in mouse models of human AML. ddC (35 mg/kg daily i.p. x 11 days) caused tumor regression in an OCI-AML2 xenograft model without toxicity (changes body weight, behavior, serum chemistries). In OCI-AML2 cells isolated from treated mice, ddC reduced mtDNA by 95% and mtDNA-encoded ETC proteins by 90%. In addition, ddC (75 mg/kg i.p x 6 weeks) significantly reduced human AML bone marrow engraftment in primary AML (n=2, P 〈 0.0001, n=1,P 〈 0.05, t-test) and secondary AML (n=1, 14 vs 3%, P 〈 0.01, t-test) without toxicity. Thus, AML cells have increased nucleoside kinase activity that is functionally important for mtDNA biogenesis. We leveraged this unique biological vulnerability to preferentially activate ddC, deplete mtDNA and selectively target oxidative phosphorylation in AML. Disclosures Schimmer: Novartis: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1339-1339
    Abstract: The majority of mitochondrial proteins are encoded in the nucleus, translated in the cytoplasm and imported into the mitochondria. A subset of cysteine-rich proteins destined for the mitochondrial intermembrane space are oxidized and folded by the Mitochondrial IMS Assembly (MIA) pathway. We found that genes encoding substrates of the MIA pathway are over-expressed in leukemic stem cells compared to bulk AML cells. Therefore, we assessed the effects of inhibiting the MIA pathway in AML by targeting the FAD linked sulfhydryl oxidase ALR, an integral part of the MIA machinery. Knockdown of ALR with shRNA reduced the growth and viability of OCI-AML2, TEX and NB4 leukemia cells. In addition, ALR knockdown reduced engraftment of TEX cells into mouse marrow, demonstrating an effect on the leukemia initiating cells. The small molecule selective ALR inhibitor, MitoBloCK-6 killed AML cells (IC50 of 5-10 mM) and preferentially reduced the clonogenic growth of primary AML cells over normal hematopoietic cells. MitoBloCK-6 treatment (80 mg/kg i.p. 5 of 7 days x 2 weeks) of mice engrafted with primary AML cells strongly reduced the leukemic burden without changing mouse body weight, serum chemistries, or organ histology. In contrast, MitoBloCK-6 did not change engraftment of normal cord blood in similar experiments. As evidenced by secondary transplants, MitoBloCK-6 also targeted leukemic stem cells. As expression levels of ALR substrates are increased in AML stem cells we assessed the effects of ALR inhibition on differentiation in AML. Genetic or chemical inhibition of ALR induced the differentiation of AML cells as evidenced by changes in gene expression, increased differentiation associated CD surface marker expression and increased non-specific esterase. Interrogation of the effects of ALR inhibition on its substrates identified the mitochondrial copper chaperone, Cox17 as the primary downstream target in leukemic cells. Genetic or chemical inhibition of ALR selectively reduced levels of Cox17 protein. Validating the functional importance of these findings, knockdown of Cox17 phenocopied ALR inhibition and reduced AML proliferation and induced AML differentiation. Cox17 is a copper metallochaperone that promotes respiratory chain complex IV assembly by loading copper into the respiratory complex. COX17 knockdown slightly reduced the complex IV enzymatic activity, but did not change basal oxygen consumption or ROS production. However, COX17 knockdown increased intracellular levels of free copper 16-fold as measured by atomic mass spectrometry. Copper is a known inhibitor of adenosylhomocysteinase, a key enzyme involved in the preservation of S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio in cells. SAM is a global methyl donor and is critical for DNA methylation. Knockdown of COX17 or ALR inhibition with MitoBloCK-6 decreased levels of SAM and reduced DNA methylation in AML cells. Likewise, the enzymatic activity of adenosylhomocysteinase was reduced in OCI-AML2 cells after MitoBloCK-6 treatment. Importantly, co-treatment with the copper chelator, penicillamine, rescued reductions in SAM, DNA methylation, and cell viability after COX17 knockdown or MitoBloCK-6 treatment. Thus, we have discovered a novel copper-dependent mechanism by which mitochondrial pathways regulate epigenetics and stemness in AML. Moreover, inhibitors of ALR or COX17 may be a novel therapeutic strategy to promote the differentiation of AML cells and stem cells. Disclosures Schimmer: Otsuka Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Medivir AB: Research Funding; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 129, No. 19 ( 2017-05-11), p. 2657-2666
    Abstract: AML cells have increased cytoplasmic nucleoside kinase expression, which functionally contribute to mtDNA biosynthesis. AML cells preferentially activated the nucleoside analog ddC, which inhibited mtDNA replication, oxphos, and induced anti-AML effects.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1335-1335
    Abstract: Our group and others have shown that acute myeloid leukemia (AML) cells have unique mitochondrial characteristics with an increased reliance on oxidative phosphorylation. Through an shRNA screen for new biological vulnerabilities in the mitochondria of AML cells, we identified the mitochondrial protease, neurolysin (NLN). NLN is a zinc metalloprotease whose mitochondrial function is not well understood and whose role in AML growth and viability has not been previously reported. We analyzed the expression of NLN in AML cells and normal hematopoietic cells. By immunoblotting, NLN was overexpressed in 80% of primary AML patient samples compared to normal hematopoietic cells. Likewise, in an analysis of gene expression databases, NLN mRNA was increased in a subset of AML patient samples, compared to normal hematopoietic cells. Next, we assessed the effects of knocking down NLN in AML cell lines (OCI-AML2, NB4, and MV4-11) using three independent shRNAs in lentiviral vectors. Target knockdown was confirmed by immunoblotting. NLN knockdown reduced growth in all three tested cell lines by 50-70%. NLN knockdown also targeted the leukemia initiating cells in vitro and in vivo as NLN knockdown reduced the clonogenic growth of AML cells (40-75%) and the engraftment of TEX cells into immune deficient mice by 85%. Taken together, these data suggest that NLN is necessary for the growth of AML cells. The role of NLN in the mitochondria is not well understood. To gain insight into NLN's mitochondrial function, we investigated NLN's protein interactors using proximity-dependent biotin labeling (BioID). The top hits in the protein-protein interaction screen were mitochondrial matrix proteins and respiratory chain subunits were particularly enriched. Therefore, we measured the effects of NLN knockdown on mitochondrial structure and function. Knockdown of NLN in AML cells reduced basal oxygen consumption without altering reactive oxygen species generation, mitochondrial membrane potential, or mitochondrial mass. No changes were seen in the total levels of respiratory chain complex subunits as measured by immunoblotting on denaturing gels. Respiratory chain complexes assemble into higher order supercomplex structures that maintain the integrity of the mitochondria and promote efficient oxidative metabolism. Therefore, we tested whether NLN is required for the formation of respiratory chain supercomplexes. As measured by blue native polyacrylamide gel electrophoresis, knockdown of NLN impaired the formation of respiratory chain supercomplexes. Through our BioID analysis, we also identified the mitochondrial Ca2+/H+ antiporter, LETM1 (leucine zipper-EF-hand containing transmembrane protein 1) as a top interactor with NLN. LETM1 is a known regulator of respiratory chain supercomplex formation. We showed that knockdown of NLN impaired LETM1 assembly, potentially explaining how NLN regulates supercomplex formation. Finally, we tested if hypoxia influences respiratory chain supercomplex formation and sensitivity to NLN inhibition. OCI-AML2 cells cultured for 72 hours under hypoxic conditions (0.2% O2) showed impaired assembly of respiratory chain supercomplexes, decreased levels of LETM1 protein, and resistance to NLN knockdown. Thus, we discovered that the mitochondrial protease NLN regulates oxidative metabolism by controlling the assembly of respiratory chain supercomplexes. Moreover, we highlight NLN as a potential new therapeutic target for AML. Disclosures Schimmer: Otsuka Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Medivir AB: Research Funding; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 2532-2532
    Abstract: Hematopoietic cells are arranged in a hierarchy where mature blood cells arise from stem and progenitor precursors. AML is also hierarchical with differentiated blasts arising from leukemic stem/progenitor cells. Recent studies show that metabolites can affect epigenetic marks; however, it is unknown whether metabolic enzymes can directly localize to the nucleus to regulate stemness in AML and normal hematopoietic cells. Here, we discovered that the mitochondrial enzyme, Hexokinase 2, localizes to the nucleus in AML and normal hematopoietic stem cells to maintain stemness. Metabolic enzymes that localize to nucleus of stem cells were identified by evaluating stem and bulk fractions of OCI-AML-8227 leukemia cells, which are arranged in a hierarchy with functionally defined stem cells. We separated OCI-AML-8227 cells into CD34+38- and CD34-38+ populations by FACS and prepared nuclear and cytoplasmic lysates. Immunoblotting of the lysates revealed that the metabolic enzyme Hexokinase 2 (HK2) was increased in the nuclear fraction of 8227 stem cells compared to bulk cells. In contrast, other mitochondrial enzymes such as Enolase1, Aconitase2, and Succinate Dehydrogenase A & B, were not detected in the nuclear lysates. HK2 is an outer mitochondrial membrane protein that phosphorylates glucose to glucose-6-phosphate, initiating glycolysis. We confirmed nuclear HK2 in OCI-AML-8227 stem cells by confocal microscopy and also demonstrated nuclear HK2 in AML cell lines (OCI-AML2, NB4, K563, and MV411) and in 7 of 9 primary AML samples. We FACS sorted normal cord blood into populations of stem/progenitor (HSC, MPP, MLP, CMP, GMP and MEP) and differentiated (Monocytes, Granulocytes, B, T, and NK) cells. The localization of HK2 in these cells was analysed and quantified by immunofluorescence. Nuclear HK2 was detected in the stem/progenitor cells and progressively declined to minimal levels as cells matured. Next, we explored mechanisms that regulate nuclear localization of HK2. AKT-mediated phosphorylation of HK2 promoted localization to mitochondria while inhibition of phosphorylation increased its nuclear levels. Moreover, the nuclear import of HK2 was dependent on IPO5, a member of b-importin family that imports protein to the nucleus; CRM1 was responsible for HK2 nuclear export. We tested whether the nuclear localization of HK2 was functionally important to maintain stemness. We overexpressed HK2 tagged with nuclear localizing signals (PKKKRKV or PAAKRVKLD) in 8227 and NB4 leukemia cells. Selective overexpression of HK2 in the nucleus did not alter the rate of proliferation of the cells, however there was enhanced clonogenic growth and inhibition of retinoic acid-mediated cell differentiation. Conversely, we selectively reduced nuclear HK2 by expressing HK2 with an outer mitochondrial localization signal while knocking down endogenous HK2 with shRNA targeting the 3'UTR of HK2. Selective depletion of nuclear HK2 in AML cells did not alter growth rate, but did reduce clonogenic growth and increased differentiation after treatment with retinoic acid. To determine whether nuclear HK2 maintains stemness through its kinase activity, we over-expressed a kinase dead double mutant of nuclear HK2(D209A D657A). Nuclear kinase dead HK2 increased clonogenic growth and inhibited differentiation after retinoic acid treatment, demonstrating that HK2 maintains stemness independent of kinase function. To understand nuclear functions of HK2, we used proximity-dependent biotin labeling (BioID) and mass spectrometry to identify proteins that interact with nuclear HK2. A top hit in our screen was Exonuclease 3'-5' domain containing 2 (EXD2), involved in DNA repair. Of note, DNA damage induces differentiation of AML cells. In 8227 cells, nuclear EXD2 was higher in the stem cell fraction compared to the bulk fraction. Moreover, knockdown of EXD2 reduced AML growth, clonogenic growth and decreased nuclear HK2 levels. Finally, nuclear HK2 overexpression conferred resistance to the PARP inhibitor, olaparib. In summary, we discovered that unphosphorylated HK2 localizes to the nucleus in malignant and normal hematopoietic stem cells. Through mechanisms independent of its kinase function, nuclear HK2 maintains AML cells in their stem/progenitor state potentially by regulating DNA damage and repair. Thus, we define a new role for a mitochondrial enzyme in the regulation of stemness and differentiation. Disclosures Minden: Trillium Therapetuics: Other: licensing agreement. Schimmer:Medivir Pharmaceuticals: Research Funding; Otsuka Pharmaceuticals: Consultancy; Novartis Pharmaceuticals: Consultancy; Jazz Pharmaceuticals: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2795-2795
    Abstract: Hematopoietic cells are arranged in a hierarchy where stem and progenitor cells differentiate into mature blood cells. Likewise, AML (Acute Myeloid Leukemia) is also hierarchical with leukemic stem and progenitor cells giving rise to more mature and differentiated blasts. Recent studies have shown that mitochondrial enzymes such as IDH2 can regulate AML stemness by altering metabolites that affect epigenetic marks. However, it is unknown whether mitochondrial metabolic enzymes can directly localize to the nucleus to regulate stemness in AML and normal hematopoietic cells. Here, we show that the mitochondrial enzyme, Hexokinase 2, localizes to the nucleus in AML and normal hematopoietic stem cells to maintain stemness. We sought to identify mitochondrial metabolic enzymes that localize to the nucleus of stem cells, by evaluating the stem and bulk fractions from 8227 leukemia cells. 8227 leukemia cells are arranged in a hierarchy with functionally defined stem cells present in the CD34+CD38- fraction. We separated 8227 cells into CD34+CD38- and CD34-CD38+ populations by FACS sorting and prepared lysates of the nuclear and cytoplasmic fractions from each population. Using immunoblotting, we measured levels of mitochondrial enzymes in the subcellular fractions of each population. We discovered that the metabolic enzyme Hexokinase 2 (HK2) was increased in the nuclear fraction of 8227 stem cells compared to bulk cells. In contrast, other mitochondrial enzymes such as Aconitase 2 and Succinate Dehydrogenase B were not detected in the nuclear fractions. HK2 is an outer mitochondrial membrane protein that phosphorylates glucose to glucose-6-phosphate, thereby initiating glycolysis and the entry of glucose metabolites into the TCA cycle in the mitochondria. The nuclear localization of HK2 in mammalian cells has not been previous reported. We confirmed that 8227 cells have nuclear HK2 by confocal fluorescent microscopy and also demonstrated nuclear HK2 in AML cell lines (OCI-AML2, NB4, K562, and MV411) and primary AML samples. We also FACS sorted normal cord blood into populations of stem/progenitor (HSC, MPP, MLP, CMP, GMP and MEP) and differentiated (B cells, T cells, NK cells, Monocytes and Granulocytes) cells. The localization of HK2 in these cell fractions was measured by immunofluorescence and quantified by Metamorph and Imaris. Nuclear HK2 was detected in the stem/progenitor cells and progressively declined to minimal levels as the cells matured (Fig 1A). The mitochondrial localization of HK2 is dependent on AKT-mediated phosphorylation of Thr-473 and inhibited by dephosphorylation by the phosphatase PHLPP1. We asked whether phosphorylation of HK2 regulates the nuclear abundance of HK2. Using AML2 cells, we showed that knockdown of PHLPP1 decreased the abundance of nuclear HK2, while inhibition of AKT increased HK2 in the nucleus. Finally, we tested whether the nuclear localization of HK2 was functionally important to maintain stemness. We over-expressed HK2 tagged with nuclear localizing signals (PKKKRKV and PAAKRVKLD) in 8227 and NB4 leukemia cells. We confirmed the selective over-expression of HK2 in the nucleus of these cells by immunoblotting and immunofluorescence. Increasing nuclear HK2 did not alter the proliferation of the cells under basal conditions. However, increasing nuclear HK2 enhanced clonogenic growth and blocked retinoic acid-mediated cell differentiation. In summary, we discovered that the unphosphorylated form of the metabolic enzyme HK2 localizes to the nucleus in malignant and normal hematopoietic stem cells and is functionally important to maintain stem/progenitor state. Thus, we define a new role for mitochondrial enzymes in the regulation of stemness and differentiation. Disclosures Schimmer: Medivir AB: Research Funding; Jazz Pharmaceuticals: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Otsuka Pharmaceuticals: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1562-1562
    Abstract: Mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein that functions as a receptor-like protein for pro-apoptotic BID. In addition to its role in apoptosis, recent findings show that MTCH2 also regulates cellular metabolism. In murine hematopoietic cells, loss of MTCH2 increases oxidative phosphorylation and reduces the number of hematopoietic stem cells. Here, we sought to understand the role of MTCH2 in leukemogenesis and knocked down MTCH2 in leukemia cell lines using multiple independent shRNAs. Knockdown of MTCH2 reduced growth and viability of AML cells: OCI-AML2 ( 〉 90%), TEX ( 〉 80%), U937 ( 〉 65%), and HL60 ( 〉 75%). MTCH2 knockdown also decreased the clonogenic growth of OCI-AML2 ( 〉 60%), TEX ( 〉 70%), and U937 ( 〉 40%) cells compared to controls. However, MTCH2 knockdown did not induce cell death as indicated by annexin V/PI staining. In addition, knockdown of MTCH2 in TEX cells reduced engraftment into the marrow of non-obese diabetic/severe combined immunodeficiency-growth factor (NOD/SCID-GF) mice (control 17±4%, n=10) vs. sh-MTCH2 (4±0.86%, n=10). In mouse models, knockout of MTCH2 decreased the leukomogenic potential of murine hematopoietic stem cells transformed with the MLL-AF9 oncogene and increased the survival of these mice. To understand the mechanism by which MTCH2 knockdown decreased cell growth, we used genome wide transcriptome analysis with RNA-seq and observed an up regulation of genes involved in cellular differentiation. Consistent with increased MTCH2 knockdown promoting differentiation, OCI-AML2 cells with MTCH2 knockdown displayed increased non-specific esterase staining. Increased differentiation (Lin+ve cells) was also observed in MLL-AF9 with MTCH2 knockout. Knockdown of MTCH2 in TEX and OCI-AML2 cells increased levels of H3 and H4 histone acetylation as demonstrated by immunoblotting. Of note, differentiation and increased H3 and H4 acetylation was not observed after inhibiting other mitochondrial processes, such as mitochondrial protein synthesis or mitochondrial DNA replication. Although MTCH2 is a receptor for BID, the increased H3 and H4 acetylation appeared independent of BID as small molecule BID inhibitors did not alter H3 and H4 acetylation. MTCH2 regulates cell metabolism. Therefore, we measured changes in intracellular metabolites in AML cells after MTCH2 knockdown. In AML cells, MTCH2 knockdown increased levels of lactate (2 fold), but did not change the basal rate of oxygen consumption or the activity of mitochondrial respiratory chain complexes. Loss of mitochondrial pyruvate dehydrogenase complex increases lactate levels and a recent study reported that the translocation of pyruvate dehydrogenase complex from the mitochondria to the nucleus under conditions of mitochondrial stress, increases H3 and H4 histone acetylation (Cell. 2014; 158(1):84-97). Therefore, we measured changes in the localization of pyruvate dehydrogenase complex after MTCH2 knockdown. Knockdown of MTCH2 decreased mitochondrial and increased nuclear dehydrogenase complex in OCI-AML2 and TEX cells. Thus, in summary, MTCH2 regulates the differentiation of AML cells and controls the localization of pyruvate dehydrogenase complex and histone acetylation. These results also suggest a mechanism by which loss of MTCH2 leads to reductions of normal hematopoietic stem cells. Disclosures Schimmer: Novartis: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...